组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 190 道试题
23-24高二上·上海·课后作业
解答题-证明题 | 较易(0.85) |
1 . 请指出下列各题用数学归纳法证明过程中的错误.
(1)设为正整数,求证:
证明:假设当为正整数)时等式成立,即有
那么当时,就有
.因此,对于任何正整数等式都成立.
(2)设为正整数,求证:
证明:①当时,左边,右边,等式成立.
②假设当为正整数)时,等式成立,即有
那么当时,由等比数列求和公式,就有,等式也成立.
根据(1)和(2),由数学归纳法可以断定对任何正整数都成立.
2023-09-12更新 | 95次组卷 | 1卷引用:4.4 数学归纳法
2 . 已知函数的定义域为为大于的常数,对任意,都满足,则称函数上具有“性质”.
(1)试判断函数和函数是否具有“性质”(无需证明);
(2)若函数具有“性质”,且,求证:对任意,都有
(3)若函数的定义域为,且具有“性质”,试判断下列命题的真假,并说明理由,
①若在区间上是严格增函数,则此函数在上也是严格增函数;
②若在区间上是严格减函数,则此函数在上也是严格减函数.
2023-01-12更新 | 630次组卷 | 6卷引用:上海市闵行区2022-2023学年高一上学期期末数学试题
3 . 已知函数的定义域为R,若对任意区间,存在,使,则的生成函数.
(1)求证:的生成函数;
(2)若的生成函数,判断并证明的单调性;
(3)若的生成函数,实数,求的一个生成函数.
2023-05-05更新 | 572次组卷 | 4卷引用:上海交通大学附属中学2022-2023学年高一下学期期中数学试题
4 . 已知抛物线C上两个不同的点.
(1)求证:直线C相切;
(2)若O为坐标原点,CAB处的切线交于点P,证明:点P在定直线上.
2022-07-25更新 | 1236次组卷 | 6卷引用:江西省名校联考2023届高三7月第一次摸底测试数学(理)试题
5 . 我们用,…,,且)表示n个变量,就如同abcdef等表示变量一样.已知,…,,且)均为正数.
(1)求证:
(2)求证:
(3)请将命题(1)、(2)推广到一般情形(不作证明).
2021-12-25更新 | 273次组卷 | 1卷引用:沪教版(2020) 必修第一册 领航者 一课一练 第2章 2.3 第2课时 平均值不等式及其应用(2)
6 . (1)叙述并证明直线与平面平行的性质定理(要求写出已知、求证、证明过程并画图);
(2)叙述并证明三垂线定理(要求写出已知、求证、证明过程并画图);
(3)叙述并证明两个平面平行的判定定理(要求写出已知、求证、证明过程并画图).
2021-12-03更新 | 108次组卷 | 2卷引用:上海市奉贤区致远高级中学2021-2022学年高二上学期期中教学评估数学试题
7 . 假设视网膜为一个平面,光在空气中不折射,眼球的成像原理为小孔成像. 思考如下成像原理: 如图,地面内有圆,其圆心在线段上,且与线段交于不与重合的点地面,且点为人眼所在处,视网膜平面与直线垂直. 过点作平面平行于视网膜平面. 科学家已经证明,这种情况下圆上任意一点到点的直线与平面交点的轨迹(令为曲线)为椭圆或圆,且由于小孔成像,曲线与圆在视网膜平面上的影像是相似的,则当视网膜平面上的圆的影像为圆时,圆的半径____________. 当圆的半径满足时,视网膜平面上的圆的影像的离心率的取值范围为____________.

8 . 函数的凹凸性的定义是由丹麦著名的数学家兼工程师Johan Jensen在1905年提出来的.其中对于凸函数的定义如下:设连续函数的定义域为(或开区间,或都可以),若对于区间上任意两个数,均有成立,则称为区间上的凸函数.容易证明譬如都是凸函数.Johan Jensen在1906年将上述不等式推广到了个变量的情形,即著名的Jensen不等式:若函数为其定义域上的凸函数,则对其定义域内任意个数,均有成立,当且仅当时等号成立.
(1)若函数上的凸函数,求的取值范围:
(2)在中,求的最小值;
(3)若连续函数的定义域和值域都是,且对于任意均满足下述两个不等式:,证明:函数上的凸函数.(注:
2024-05-09更新 | 301次组卷 | 3卷引用:湖南省长沙市雅礼中学2023-2024学年高一下学期期中考试数学试题
9 . 离散对数在密码学中有重要的应用.设是素数,集合,若,记除以的余数,除以的余数;设两两不同,若,则称是以为底的离散对数,记为
(1)若,求
(2)对,记除以的余数(当能被整除时,).证明:,其中
(3)已知.对,令.证明:
2024-01-19更新 | 6538次组卷 | 8卷引用:2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)数学试题
10 . 已知为有穷正整数数列,且,集合.若存在,使得,则称可表数,称集合可表集.
(1)若,判定31,1024是否为可表数,并说明理由;
(2)若,证明:
(3)设,若,求的最小值.
共计 平均难度:一般