组卷网 > 章节选题 > 选修2-1
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 1607 道试题
1 . n个有次序的实数,…,所组成的有序数组称为一个n维向量,其中称为该向量的第i个分量.特别地,对一个n维向量,若,称n维信号向量.设,则的内积定义为,且.
(1)直接写出4个两两垂直的4维信号向量;
(2)证明:不存在10个两两垂直的10维信号向量;
(3)已知k个两两垂直的2024维信号向量,…,满足它们的前m个分量都是相同的,求证:.
2024-04-01更新 | 222次组卷 | 1卷引用:江苏省洪泽中学等七校2023-2024学年高二下学期第一次联考数学试卷
22-23高二下·四川遂宁·阶段练习
2 . 已知抛物线C,过点的直线l交抛物线交于AB两点,抛物线在点A处的切线为,在点B处的切线为,直线交于点M.
(1)设直线的斜率分别为直线,求证:
(2)证明:点M在定直线上;
(3)设线段AB的中点为N,求的取值范围.
2023-09-24更新 | 701次组卷 | 4卷引用:3.3.2 抛物线的几何性质(3)
2022高二下·辽宁·学业考试
3 . 如图所示,在四棱锥,底面为正方形.

(1)求证:
(2)已知,在棱上是否存在一点,使,如果存在请确定点的位置,并写出证明过程;如果不存在,请说明理由.
2023-01-06更新 | 1109次组卷 | 5卷引用:第6章:空间向量与立体几何 章末检测试卷-【题型分类归纳】2022-2023学年高二数学同步讲与练(苏教版2019选择性必修第二册)
4 . 已知椭圆过点,且离心率为.设为椭圆的左、右顶点,为椭圆上异于的一点,直线分别与直线相交于两点,且直线与椭圆交于另一点
(1)求椭圆的标准方程;
(2)求证:直线的斜率之积为定值;
(3)判断三点是否共线:并证明你的结论.
5 . 如图,在四棱锥中,四边形是矩形,是正三角形,且平面平面为棱的中点,四棱锥的体积为

(1)若为棱的中点,求证:平面
(2)在棱上是否存在点,使得平面与平面所成锐二面角的余弦值为?若存在,指出点的位置并给以证明;若不存在,请说明理由.
2022-08-26更新 | 4951次组卷 | 24卷引用:江苏省南京市六校联合体2022-2023学年高三上学期8月联合调研数学试题
21-22高三下·江西·阶段练习
解题方法
6 . 已知抛物线C上两个不同的点.
(1)求证:直线C相切;
(2)若O为坐标原点,CAB处的切线交于点P,证明:点P在定直线上.
2022-07-25更新 | 1221次组卷 | 6卷引用:专题05 抛物线8种常见考法归类(2)
21-22高二下·辽宁盘锦·阶段练习
7 . 汽车前灯反射镜曲面设计为抛物曲面(即由抛物绕其轴线旋转一周而成的曲面).其设计的光学原理是:由放置在焦点处的点光源发射的光线经抛物镜面反射,光线均沿与轴线平行方向路径反射,而抛物镜曲面的每个反射点的反射镜面就是曲面(线)在该点处的切面(线).定义:经光滑曲线上一点,且与曲线在该点处切线垂直的直线称为曲线在该点处的法线.设计一款汽车前灯,已知灯口直径为20cm,灯深25cm(如图1).设抛物镜面的一个轴截面为抛物线C,以该抛物线顶点为原点,以其对称轴为x轴建立平面直角坐标系(如图2)抛物线上点P到焦点距离为5cm,且在x轴上方.研究以下问题:

(1)求抛物线C的标准方程和准线方程.
(2)求P点坐标.
(3)求抛物线在点P处法线方程.
(4)为证明(检验)车灯的光学原理,求证:由在抛物线焦点F处的点光源发射的光线经点P反射,反射光线所在的直线平行于抛物线对称轴.
2022-04-19更新 | 1081次组卷 | 5卷引用:3.3.2 抛物线的几何性质(难点)-2022-2023学年高二数学《基础·重点·难点 》全面题型高分突破(苏教版2019选择性必修第一册)
2022·广东汕头·二模
8 . 在平面直角坐标系xOy中,已知圆与抛物线交于点MN(异于原点O),MN恰为该圆的直径,过点E(0,2)作直线交抛物线于AB两点,过AB两点分别作抛物线C的切线交于点P
(1)求证:点P的纵坐标为定值;
(2)若F是抛物线C的焦点,证明:
2022-04-24更新 | 1479次组卷 | 4卷引用:江苏省南通市如皋市2023-2024学年高三上学期8月诊断测试数学试题
9 . 如图所示,四边形ABCD是边长为3的正方形,平面ABCDBE与平面ABCD所成角为60°.

(1)求证:平面BDE
(2)求二面角的余弦值;
(3)设点M是线段BD上的一个动点,试确定点M的位置,使得平面BEF,并证明你的结论.
2021-11-11更新 | 1824次组卷 | 27卷引用:江苏省苏州第十中学2022届高三下学期3月阶段检测数学试题
10 . 设直线,曲线.若直线与曲线同时满足下列两个条件:①直线与曲线相切且至少有两个切点;②对任意都有.则称直线为曲线的“上夹线”.
(1)已知函数.求证:为曲线的“上夹线”;
(2)观察下图:

根据上图,试推测曲线的“上夹线”的方程,并给出证明.
2021-08-24更新 | 367次组卷 | 2卷引用:第5章《导数及其应用》 培优测试卷(一)-2021-2022学年高二数学同步培优训练系列(苏教版2019选择性必修第一册)
共计 平均难度:一般