组卷网 > 章节选题 > 选修2-1
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 191 道试题
1 . 已知离心率为的椭圆的右焦点为,点为椭圆上第一象限内的一点,满足垂直于轴,且.
(1)求椭圆的方程;
(2)直线的斜率存在,交椭圆两点,三点不共线,且直线和直线关于直线对称,证明:直线过定点.
7日内更新 | 287次组卷 | 1卷引用:甘肃省靖远县2024-2025学年高三上学期10月高考模拟联考数学试题
2 . 已知双曲线的右焦点为F,左、右顶点分别为MN,点E上一点,且直线PMPN的斜率之积为
(1)求的值;
(2)过F且斜率为1的直线lEAB两点,O为坐标原点,CE上一点,满足的面积为,求E的方程.
3 . 在平面直角坐标系中,动点)与定点的距离和到直线的距离之比是常数
(1)求动点的轨迹方程;
(2)记动点的轨迹为曲线,过点的直线与曲线交于两点,直线与曲线的另一个交点为.
(i)求的值;
(ii)记面积为面积为面积为,试问是否为定值,若是,求出该定值;若不是,请说明理由.
2024-05-08更新 | 1082次组卷 | 4卷引用:甘肃省兰州市第五十八中学2024届高三第二次高考仿真考试数学试题
4 . 在平面直角坐标系中,点到点与到直线的距离之比为,记点的轨迹为曲线.
(1)求曲线的方程;
(2)若点是圆上的一点(不在坐标轴上),过点作曲线的两条切线,切点分别为,记直线的斜率分别为,且,求直线的方程.
6 . 已知双曲线 与双曲线 的渐近线相同,且M 经过点 的焦距为4.

(1)求M 的方程;
(2)如图,过点 T(0,1)的直线 l(斜率大于0)与双曲线 M N 的左、右两支依次相交于A,B,C,D,若求直线 l的方程.
7 . 已知椭圆的右焦点为,设直线轴的交点为,过点且斜率为的直线与椭圆交于两点,为线段的中点.

(1)若,求直线的倾斜角;
(2)设直线交直线于点.
①求直线的斜率;
②求的值.
2024-03-16更新 | 342次组卷 | 2卷引用:甘肃省民勤县第一中学2023-2024学年高二下学期开学考试数学试题
8 . 已知椭圆的离心率为,且过点
(1)求椭圆的标准方程;
(2)若椭圆的上顶点为点,过点的直线交椭圆于点,证明:为定值,并求出定值.
2024-03-15更新 | 343次组卷 | 1卷引用:甘肃省天水市第一中学2023-2024学年高二下学期开学考试数学试题
9 . “工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长.某些折纸活动蕴含丰富的数学内容,例如:用一张圆形纸片,按如下步骤折纸(如图).

步骤1:设圆心为E,在圆内异于圆心处取一点,标记为F
步骤2:把纸片折叠,使圆周正好通过点F
步骤3:把纸片展开,并留下一道折痕;
步骤4:不停重复步骤2和3,就能得到越来越多的折痕.
已知这些折痕所围成的图形是一个椭圆.若取半径为6的圆形纸片,设定点F到圆心E的距离为4,按上述方法折纸.
(1)以点FE所在的直线为x轴,建立适当的坐标系,求折痕围成的椭圆C的标准方程;
(2)若过点且不与y轴垂直的直线l与椭圆C交于MN两点,在x轴的正半轴上是否存在定点,使得直线TMTN的斜率之积为定值?若存在,求出该定点和定值;若不存在,请说明理由.
2024-03-10更新 | 261次组卷 | 2卷引用:甘肃省定西市临洮县2024届高三下学期开学假期学习质量检测数学试题
10 . 已知双曲线的两条渐近线互相垂直,且经过点
(1)求双曲线的标准方程;
(2)若过点的直线交双曲线同一支于两点,设中点为,求面积的取值范围.
2024-03-09更新 | 153次组卷 | 1卷引用:甘肃省天水市第一中学2023-2024学年高二下学期开学考试数学试题
共计 平均难度:一般