名校
解题方法
1 . 已知离心率为的椭圆的右焦点为,点为椭圆上第一象限内的一点,满足垂直于轴,且.
(1)求椭圆的方程;
(2)直线的斜率存在,交椭圆于两点,三点不共线,且直线和直线关于直线对称,证明:直线过定点.
(1)求椭圆的方程;
(2)直线的斜率存在,交椭圆于两点,三点不共线,且直线和直线关于直线对称,证明:直线过定点.
您最近一年使用:0次
名校
解题方法
2 . 已知双曲线的右焦点为F,左、右顶点分别为M,N,点是E上一点,且直线PM,PN的斜率之积为.
(1)求的值;
(2)过F且斜率为1的直线l交E于A,B两点,O为坐标原点,C为E上一点,满足,的面积为,求E的方程.
(1)求的值;
(2)过F且斜率为1的直线l交E于A,B两点,O为坐标原点,C为E上一点,满足,的面积为,求E的方程.
您最近一年使用:0次
2024-05-12更新
|
378次组卷
|
3卷引用:甘肃省武威第六中学2023-2024学年高三下学期第五次诊断数学试卷
3 . 在平面直角坐标系中,动点()与定点的距离和到直线:的距离之比是常数.
(1)求动点的轨迹方程;
(2)记动点的轨迹为曲线,过点的直线与曲线交于两点,直线与曲线的另一个交点为.
(i)求的值;
(ii)记面积为,面积为,面积为,试问是否为定值,若是,求出该定值;若不是,请说明理由.
(1)求动点的轨迹方程;
(2)记动点的轨迹为曲线,过点的直线与曲线交于两点,直线与曲线的另一个交点为.
(i)求的值;
(ii)记面积为,面积为,面积为,试问是否为定值,若是,求出该定值;若不是,请说明理由.
您最近一年使用:0次
2024-05-08更新
|
1082次组卷
|
4卷引用:甘肃省兰州市第五十八中学2024届高三第二次高考仿真考试数学试题
甘肃省兰州市第五十八中学2024届高三第二次高考仿真考试数学试题浙江省绍兴市上虞区2023-2024学年高三下学期适应性教学质量调测数学试卷(已下线)专题11 解析几何中的定值问题【练】(压轴大全)贵州省贵州大学附属中学2023-2024学年高二下学期7月期末考试数学试卷
名校
解题方法
4 . 在平面直角坐标系中,点到点与到直线的距离之比为,记点的轨迹为曲线.
(1)求曲线的方程;
(2)若点是圆上的一点(不在坐标轴上),过点作曲线的两条切线,切点分别为,记直线的斜率分别为,且,求直线的方程.
(1)求曲线的方程;
(2)若点是圆上的一点(不在坐标轴上),过点作曲线的两条切线,切点分别为,记直线的斜率分别为,且,求直线的方程.
您最近一年使用:0次
2024-04-13更新
|
297次组卷
|
7卷引用:甘肃省定西市渭源一中教育联盟2025届高三上学期暑假开放日教学测试数学试题
名校
解题方法
5 . 双曲线上一点到左、右焦点的距离之差为6,
(1)求双曲线的方程,
(2)已知,过点的直线与交于(异于)两点,直线与交于点,试问点到直线的距离是否为定值?若是,求出该定值;若不是,请说明理由,
(1)求双曲线的方程,
(2)已知,过点的直线与交于(异于)两点,直线与交于点,试问点到直线的距离是否为定值?若是,求出该定值;若不是,请说明理由,
您最近一年使用:0次
2024-04-12更新
|
2580次组卷
|
8卷引用:甘肃省定西市2023-2024学年高三下学期教学质量统一检测数学试题
名校
解题方法
6 . 已知双曲线 与双曲线 的渐近线相同,且M 经过点 的焦距为4.
(1)求M 和 的方程;
(2)如图,过点 T(0,1)的直线 l(斜率大于0)与双曲线 M 和 N 的左、右两支依次相交于A,B,C,D,若求直线 l的方程.
(1)求M 和 的方程;
(2)如图,过点 T(0,1)的直线 l(斜率大于0)与双曲线 M 和 N 的左、右两支依次相交于A,B,C,D,若求直线 l的方程.
您最近一年使用:0次
2024-03-24更新
|
655次组卷
|
2卷引用:甘肃省陇南市部分学校2024届高三一模联考数学试题
7 . 已知椭圆的右焦点为,设直线:与轴的交点为,过点且斜率为的直线与椭圆交于、两点,为线段的中点.
(1)若,求直线的倾斜角;
(2)设直线交直线于点.
①求直线的斜率;
②求的值.
(1)若,求直线的倾斜角;
(2)设直线交直线于点.
①求直线的斜率;
②求的值.
您最近一年使用:0次
名校
解题方法
8 . 已知椭圆的离心率为,且过点.
(1)求椭圆的标准方程;
(2)若椭圆的上顶点为点,过点的直线交椭圆于点,证明:为定值,并求出定值.
(1)求椭圆的标准方程;
(2)若椭圆的上顶点为点,过点的直线交椭圆于点,证明:为定值,并求出定值.
您最近一年使用:0次
9 . “工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长.某些折纸活动蕴含丰富的数学内容,例如:用一张圆形纸片,按如下步骤折纸(如图).步骤1:设圆心为E,在圆内异于圆心处取一点,标记为F;
步骤2:把纸片折叠,使圆周正好通过点F;
步骤3:把纸片展开,并留下一道折痕;
步骤4:不停重复步骤2和3,就能得到越来越多的折痕.
已知这些折痕所围成的图形是一个椭圆.若取半径为6的圆形纸片,设定点F到圆心E的距离为4,按上述方法折纸.
(1)以点F、E所在的直线为x轴,建立适当的坐标系,求折痕围成的椭圆C的标准方程;
(2)若过点且不与y轴垂直的直线l与椭圆C交于M,N两点,在x轴的正半轴上是否存在定点,使得直线TM,TN的斜率之积为定值?若存在,求出该定点和定值;若不存在,请说明理由.
步骤2:把纸片折叠,使圆周正好通过点F;
步骤3:把纸片展开,并留下一道折痕;
步骤4:不停重复步骤2和3,就能得到越来越多的折痕.
已知这些折痕所围成的图形是一个椭圆.若取半径为6的圆形纸片,设定点F到圆心E的距离为4,按上述方法折纸.
(1)以点F、E所在的直线为x轴,建立适当的坐标系,求折痕围成的椭圆C的标准方程;
(2)若过点且不与y轴垂直的直线l与椭圆C交于M,N两点,在x轴的正半轴上是否存在定点,使得直线TM,TN的斜率之积为定值?若存在,求出该定点和定值;若不存在,请说明理由.
您最近一年使用:0次
名校
解题方法
10 . 已知双曲线的两条渐近线互相垂直,且经过点.
(1)求双曲线的标准方程;
(2)若过点的直线交双曲线同一支于两点,设中点为,求面积的取值范围.
(1)求双曲线的标准方程;
(2)若过点的直线交双曲线同一支于两点,设中点为,求面积的取值范围.
您最近一年使用:0次