组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 228249 道试题
1 . 在中,已知,解这个三角形.
2024-04-10更新 | 211次组卷 | 6卷引用:北京市新学道临川学校20120-2021学年高二上学期第一次月考数学试题
2 . 已知椭圆的短轴上端点为P,过点P作椭圆互相垂直的两弦.连接,试求点P上的射影Q的轨迹方程.
2024-04-10更新 | 30次组卷 | 1卷引用:第一届高二试题(决赛)-“枫叶新希望杯”全国数学大赛真题解析(高中版)
3 . 将5个相同的白球和5个相同的红球全部放入3个不同的盒子中,每个盒子既要有白球,又要有红球,则不同的放球方法共有(       )
A.18种B.24种C.36种D.48种
4 . 已知点,过点P向直线作垂线,垂足分别为点MN,则线段MN的长是(       
A.B.C.D.
2024-04-10更新 | 25次组卷 | 1卷引用:第一届高二试题(决赛)-“枫叶新希望杯”全国数学大赛真题解析(高中版)
5 . 已知双曲线CB是右顶点,F是右焦点,点Ax轴的正半轴上,且成等比数列,过点F作双曲线C在第一、三象限的渐近线的垂线l,垂足为点P.
(1)求证:.
(2)若l与双曲线C的左右两支分别相交于点DE,求双曲线的离心率e的取值范围.
2024-04-10更新 | 38次组卷 | 1卷引用:第二届高二试题(初赛)-“枫叶新希望杯”全国数学大赛真题解析(高中版)
6 . 已知抛物线C,过点的直线l交抛物线于PQ两点,以OPOQ为邻边作平行四边形OPRQ.
(1)求点R的轨迹方程.
(2)是否存在l,使四边形OPRQ为正方形?证明你的结论.
2024-04-10更新 | 63次组卷 | 1卷引用:第二届高二试题(初赛)-“枫叶新希望杯”全国数学大赛真题解析(高中版)
7 . 若,都有成立,则实数的取值范围是(       ).
A.B.C.D.
8 . 若函数的增区间为,则的值为______
9 . 已知OABC四点均在半径为的球S的表面上,并且满足平面,则三棱锥的体积为________.
2024-04-09更新 | 158次组卷 | 2卷引用:第十四届高二试题(B卷)-“枫叶新希望杯”全国数学大赛真题解析(高中版)
10 . 过曲线上的点作曲线的切线与曲线交于,过点作曲线的切线与曲线交于点,依此类推,可得到点列:,已知
(1)求点的坐标;
(2)求数列的通项公式;
(3)记点到直线(即直线)的距离为,求证:
2024-04-09更新 | 150次组卷 | 1卷引用:第九届高二试题(B卷)-“枫叶新希望杯”全国数学大赛真题解析(高中版)
共计 平均难度:一般