组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 733 道试题
1 . 设有穷数列的项数为,若正整数满足:,则称为数列的“点”.
(1)若,求数列的“点”;
(2)已知有穷等比数列的公比为,前项和为.若数列存在“点”,求正数的取值范围;
(3)若,数列的“点”的个数为,证明:
2 . (1)已知函数,证明:
(2)已知函数,定义:若存在,使得曲线在点与点处有相同的切线,则称切线为“自公切线”.
①证明:当时,曲线不存在“自公切线”;
②讨论曲线的“自公切线”的条数.
今日更新 | 5次组卷 | 1卷引用:重庆市第八中学校2023-2024学年高二下学期第二次月考数学试题
3 . 某公司为了解年研发资金(单位:亿元)对年产值(单位:亿元)的影响,对公司近8年的年研发资金和年产值)的数据对比分析中,选用了两个回归模型,并利用最小二乘法求得相应的关于的经验回归方程:
;②
(1)求的值;
(2)已知①中的残差平方和,②中的残差平方和,请根据决定系数选择拟合效果更好的经验回归方程,并利用该经验回归方程预测年研发资金为20亿元时的年产值.
参考数据:
参考公式;刻画回归模型拟合效果的决定系数
今日更新 | 6次组卷 | 1卷引用:重庆市第八中学校2023-2024学年高二下学期第二次月考数学试题
4 . 设集合),的非空子集,随机变量分别表示取到子集中得最大元素和最小元素的数值.
(1)若的概率为,求
(2)若,求的概率;
(3)已知:对于随机变量,有.求随机变量的均值
今日更新 | 19次组卷 | 1卷引用:重庆市实验外国语学校2023-2024学年高二下学期五月月考数学试题
5 . 2006年,在国家节能减排的宏观政策指导下,科技部在“十一五”启动了“863”计划新能源汽车重大项目.自2011年起,国家相关部门重点扶持新能源汽车的发展,也逐步得到消费者的认可.如下表是统计的2014年-2023年全国新能源汽车保有量(百万辆)数据:
年份代码12345678910
年份2014201520162017201820192020202120222023
保有量0.120.501.091.602.613.814.927.8413.1020.41
并计算得:.
(1)根据表中数据,求相关年份与全国新能源汽车保有量的样本相关系数(精确到0.01);
(2)现苏同学购买第1辆汽车时随机在新能源汽车和非新能源汽车中选择.如果第1辆购买新能源汽车,那么第2辆仍选择购买新能源汽车的概率为0.6;如果第1辆购买非新能源汽车,那么第2辆购买新能源汽车的概率为0.8,计算苏同学第2辆购买新能源汽车的概率;
(3)某汽车网站为调查新能源汽车车主的用车体验,决定从12名候选车主中选3名车主进行访谈,已知有4名候选车主是新能源汽车车主,假设每名候选人都有相同的机会被选到,求被选到新能源汽车车主的分布列及数学期望.
附:相关系数:.
6 . 对任意两个非零向量,定义:
(1)若向量,求的值;
(2)若单位向量满足,求向量的夹角的余弦值;
(3)若非零向量满足,向量的夹角是锐角,且是整数,求的取值范围.
7日内更新 | 256次组卷 | 2卷引用:重庆市璧山来凤中学等九校联考2023-2024学年高一下学期5月月考数学试题
7 . 已知为圆上一个动点,MN垂直轴,垂足为NO为坐标原点,的重心为.
(1)求点的轨迹方程;
(2)记(1)中的轨迹为曲线,直线与曲线相交于AB两点,点,若点恰好是的垂心,求直线的方程.
7日内更新 | 56次组卷 | 1卷引用:重庆市南开中学校2024届高三第九次质量检测数学试题
8 . 已知函数.
(1)当时,恒成立,求实数的取值范围;
(2)已知直线是曲线的两条切线,且直线的斜率之积为1.
(i)记为直线交点的横坐标,求证:
(ii)若也与曲线相切,求的关系式并求出的取值范围.
7日内更新 | 46次组卷 | 1卷引用:重庆市南开中学校2024届高三第九次质量检测数学试题
9 . 已知是二维离散型随机变量,其中XY是两个相互独立的离散型随机变量,的分布列用表格表示如下:

X

0

3

6

0

5


(1)求
(2)“”表示在条件下的的取值,求“”的分布列;
(3)的数学期望,为“”的分布的期望,证明:.
7日内更新 | 47次组卷 | 1卷引用:重庆市南开中学校2024届高三第九次质量检测数学试题
10 . 定义空间中既有大小又有方向的量为空间向量.起点为,终点为的空间向量记作,其大小称为的模,记作等于两点间的距离.模为零的向量称为零向量,记作.空间向量的加法、减法以及数乘运算的定义与性质和平面向量一致,如:对任意空间向量,均有;对任意实数和空间向量,均有;对任意三点,均有等.已知体积为的三棱锥的底面均为,在中,内一点,.记
(1)若到平面的距离均为1,求
(2)若的重心,且对任意,均有
(i)求的最大值;
(ii)当最大时,5个分别由24个实数组成的24元数组满足对任意,均有,且对任意均有求证:不可能对任意均成立.
(参考公式:
7日内更新 | 243次组卷 | 1卷引用:重庆市巴蜀中学校2023-2024学年高一下学期5月期中考试数学试题
共计 平均难度:一般