名校
解题方法
1 . 德国数学家黎曼(Ricmann)提出的黎曼函数r(x)在分析学中有着广泛的应用.黎曼函数r(x)的定义为,(p∈N*,q∈Z,q≠0且p,q互素),下列命题中,正确的有( )
A.存在常数T > 0,使得对任意的x∈R,都有 |
B.对任意的x∈R,有 |
C.存在a,b,a + b∈[0,1],使得 |
D.给定正整数t,记S =,则S有个元素 |
您最近一年使用:0次
2022-11-05更新
|
427次组卷
|
2卷引用:四川省四川外国语大学附属外国语学校2022-2023学年高一上学期期中数学试题
解题方法
2 . 下列各项说法正确的有( )
A.可以表示y是x的函数 | B.与是相同函数 |
C. 是奇函数 | D. 在定义域内是减函数 |
您最近一年使用:0次
名校
解题方法
3 . 若定义域是的函数满足:①,,都有;②,,且,都有.则下列结论正确的是( )
A. | B. |
C.函数是偶函数 | D.,都有 |
您最近一年使用:0次
2022-10-30更新
|
784次组卷
|
4卷引用:云南师范大学附属中学2022-2023学年高一上学期教学测评期中卷数学试题
名校
4 . 函数满足,,(a,b不同时为),当时,.若在集合或上是偶函数,数列满足,,,,则( )
A.在区间上单调递减 |
B. |
C.不等式的解集为 |
D. |
您最近一年使用:0次
名校
解题方法
5 . 下列命题中是真命题的是( )
A.“”是“的最小正周期为”的必要不充分条件 |
B.已知平面向量,的夹角为,,,则 |
C.为了得到函数的图象,只需把函数的图象向左平行移动个单位长度 |
D.函数是定义在上的偶函数且在上为减函数,,则不等式的解集为 |
您最近一年使用:0次
2022-09-29更新
|
605次组卷
|
2卷引用:辽宁省本溪市本溪县高级中学2022-2023学年高三上学期第一次月考数学试题
名校
6 . 下列命题中正确的是( )
A.幂函数在内是减函数 |
B.函数在区间内是减函数 |
C.如果函数在上是增函数,那么它在上是减函数 |
D.若定义在上的函数的图象关于直线对称,且在直线的右侧单减,则函数在直线的左侧单增 |
您最近一年使用:0次
名校
解题方法
7 . 设函数,则下列说法正确的是( )
A.若,则在上单调递减 | B.若,无最大值,也无最小值 |
C.若,则 | D.若,则 |
您最近一年使用:0次
2022-09-21更新
|
784次组卷
|
3卷引用:2022年浙江省温州市摇篮杯高一数学竞赛试题
名校
解题方法
8 . 已知函数与满足:①,②,③,则下列结论正确的是( )
A.在定义域内单调递增 |
B. |
C.在定义域内单调递减 |
D.当时,存在使得成立 |
您最近一年使用:0次
2022-08-22更新
|
586次组卷
|
2卷引用:云南省昆明市第一中学高中新课标2023届高三第一次摸底测试数学试题
名校
9 . 已知 两点位于直线 两侧, 是直线 上两点, 且 的面积是 的面积的 2 倍,若 , 下列说法正确的是( )
A. 为奇函数 |
B. 在 单调递减 |
C. 在 有且仅有两个零点 |
D. 是周期函数 |
您最近一年使用:0次
2022-07-21更新
|
1349次组卷
|
5卷引用:吉林省东北师范大学附属中学2021-2022学年高一下学期阶段性考试数学试题
名校
解题方法
10 . 设函数,且都有,则下列判断正确的是( )
A.,的图象关于原点对称 |
B.,直线和的图象至多只有一个交点 |
C.,命题“,满足”成立 |
D.,使得,都有成立 |
您最近一年使用:0次
2022-07-11更新
|
301次组卷
|
2卷引用:福建省漳州市四校2021-2022学年高二下学期期末联考数学试题