组卷网 > 章节选题 > 第三章 数系的扩充与复数的引入
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 86 道试题
1 . 现定义“维形态复数”:,其中为虚数单位,.
(1)当时,证明:“2维形态复数”与“1维形态复数”之间存在平方关系;
(2)若“2维形态复数”与“3维形态复数”相等,求的值;
(3)若正整数,满足,证明:存在有理数,使得.
7日内更新 | 95次组卷 | 1卷引用:安徽省合肥市第一中学2023-2024学年高一下学期5月期中联考数学试题
2 . 在复平面内复数所对应的点为为坐标原点,是虚数单位.
(1),计算
(2)设,求证:,并指出向量满足什么条件时该不等式取等号.
2024-05-10更新 | 80次组卷 | 1卷引用:山东省枣庄市第三中学2023-2024学年高一下学期期中考试数学试题
3 . 我们把(其中)称为一元次多项式方程.代数基本定理:任何一元次复系数多项式方程(即为实数)在复数集内至少有一个复数根;由此推得,任何一元次复系数多项式方程在复数集内有且仅有个复数根(重根按重数计算).那么我们由代数基本定理可知:任何一元次复系数多项式在复数集内一定可以分解因式,转化为个一元一次多项式的积.即,其中为方程的根.进一步可以推出:在实系数范围内(即为实数),方程有实数根,则多项式必可分解因式.例如:观察可知,是方程的一个根,则一定是多项式的一个因式,即,由待定系数法可知,.
(1)在复数集内解方程:
(2)设,其中,且.
(i)分解因式:
(ii)记点的图象与直线在第一象限内离原点最近的交点.求证:当时,.
2024-05-08更新 | 339次组卷 | 1卷引用:湖北省武汉市部分重点中学2023-2024学年高一下学期4月期中联考数学试题
2024高一下·全国·专题练习
解答题-证明题 | 适中(0.65) |
4 . 求证:
(1);
(2).
2024-03-26更新 | 41次组卷 | 1卷引用:7.3.2复数乘、除运算的三角表示及其几何意义【第二练】“上好三节课,做好三套题“高中数学素养晋级之路
智能选题,一键自动生成优质试卷~
2024高一下·江苏·专题练习
解答题-证明题 | 较易(0.85) |
5 . 设,求证:
(1)
(2).
2024-03-23更新 | 94次组卷 | 2卷引用:第十二章 复数(知识归纳+题型突破)-单元速记·巧练(苏教版2019必修第二册)
6 . 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受.形如的数称为复数,其中称为实部,称为虚部,i称为虚数单位,.当时,为实数;当且时,为纯虚数.其中,叫做复数的模.设如图,点,复数可用点表示,这个建立了直角坐标系来表示复数的平面叫做复平面,轴叫做实轴,轴叫做虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.按照这种表示方法,每一个复数,有复平面内唯一的一个点和它对应,反过来,复平面内的每一个点,有唯一的一个复数和它对应.一般地,任何一个复数都可以表示成的形式,即,其中为复数的模,叫做复数的辐角,我们规定范围内的辐角的值为辐角的主值,记作.叫做复数的三角形式.

   

(1)设复数,求的三角形式;
(2)设复数,其中,求
(3)在中,已知为三个内角的对应边.借助平面直角坐标系及阅读材料中所给复数相关内容,证明:

.
注意:使用复数以外的方法证明不给分.
2024-03-12更新 | 523次组卷 | 3卷引用:黑龙江省哈尔滨师范大学附属中学2023-2024学年高一下学期开学考试数学试卷
7 . 对于非空集合,定义其在某一运算(统称乘法)“×”下的代数结构称为“群”,简记为.而判断是否为一个群,需验证以下三点:
1.(封闭性)对于规定的“×”运算,对任意,都须满足
2.(结合律)对于规定的“×”运算,对任意,都须满足
3.(恒等元)存在,使得对任意
4.(逆的存在性)对任意,都存在,使得
记群所含的元素个数为,则群也称作“阶群”.若群的“×”运算满足交换律,即对任意,我们称为一个阿贝尔群(或交换群).
(1)证明:所有实数在普通加法运算下构成群
(2)记为所有模长为1的复数构成的集合,请找出一个合适的“×”运算使得在该运算下构成一个群,并说明理由;
(3)所有阶数小于等于四的群是否都是阿贝尔群?请说明理由.
2024-03-07更新 | 713次组卷 | 4卷引用:2024届高三新高考改革数学适应性练习(九省联考题型)
8 . 设M是由复数组成的集合,对M的一个子集A,若存在复平面上的一个圆,使得A的所有数在复平面上对应的点都在圆内或圆周上,且中的数对应的点都在圆外,则称A是一个M的“可分离子集”.
(1)判断是否是的“可分离子集”,并说明理由;
(2)设复数z满足,其中分别表示z的实部和虚部.证明:的“可分离子集”当且仅当
2024-02-18更新 | 410次组卷 | 3卷引用:2024年集英苑冬季竞赛高中数学试题
2024高三·全国·专题练习
9 . 设个复数.
(1)如果,求证:
(2)若,则有什么样的结果?
2024-01-08更新 | 175次组卷 | 3卷引用:专题06 信息迁移型【练】【通用版】
2024高三上·全国·专题练习
10 . 设是虚数,
(1)求证为实数的充要条件为
(2)若,推测为实数的充要条件;
(3)由上结论,求满足条件,及实部与虚部均为整数的复数
2024-01-07更新 | 345次组卷 | 3卷引用:专题06 信息迁移型【讲】【北京版】1
共计 平均难度:一般