组卷网 > 章节选题 > 选修2-2
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 95 道试题
1 . 对于正实数有基本不等式:,其中,为的算术平均数,,为的几何平均数.现定义的对数平均数:
(1)设,求证:
(2)①证明不等式:
②若不等式对于任意的正实数恒成立,求正实数的最大值.
2 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.
阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入;(4)整体求和等.
例如,,求证:.
证明:原式.
波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.
阅读材料二:基本不等式,当且仅当时等号成立,它是解决最值问题的有力工具.
例如:在的条件下,当x为何值时,有最小值,最小值是多少?
解:∵,∴,即,∴
当且仅当,即时,有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)已知如,求下列各式的值:
___________.
___________.
(2)若,解方程.
(3)若正数ab满足,求的最小值.
2021-10-29更新 | 512次组卷 | 3卷引用:江苏省南通中学2020-2021学年高一上学期开学考试数学试题
3 . 定义:函数的导函数为,我们称函数的导函数为函数的二阶导函数.已知.
(1)求函数的二阶导函数;
(2)已知定义在上的函数满足:对任意恒成立.为曲线上的任意一点.求证:除点外,曲线上每一点都在点处切线的上方;
(3)试给出一个实数的值,使得曲线与曲线有且仅有一条公切线,并证明你的结论.
2020-07-28更新 | 360次组卷 | 1卷引用:江苏省苏州市昆山市2020届高三下学期6月高考模拟数学试题
4 . 现新定义两个复数)和)之间的一个新运算,其运算法则为:.
(1)请证明新运算对于复数的加法满足分配律,即求证:
(2)设运算为运算的逆运算,请推导运算的运算法则.
2020-07-16更新 | 314次组卷 | 6卷引用:上海市静安区2019-2020学年高二下学期期末数学试题
5 . 已知函数,设
(1)判断函数零点的个数,并给出证明;
(2)首项为的数列满足:①;②.其中.求证:对于任意的,均有
6 . 定义:若函数图象上恰好存在相异的两点满足曲线处的切线重合,则称为曲线的“双重切点”,直线为曲线的“双重切线”.
(1)直线是否为曲线的“双重切线”,请说明理由;
(2)已知函数求曲线的“双重切线”的方程;
(3)已知函数,直线为曲线的“双重切线”,记直线的斜率所有可能的取值为,若,证明:.
7 . 已知无穷数列是首项为1,各项均为正整数的递增数列,集合.若对于集合A中的元素k,数列中存在不相同的项,使得,则称数列具有性质,记集合数列具有性质
(1)若数列的通项公式为写出集合A与集合B
(2)若集合A与集合B都是非空集合,且集合A中的最小元素为t,集合B中的最小元素为s,当时,证明:
(3)若满足,证明:
2024-04-21更新 | 381次组卷 | 1卷引用:2024届北京市房山区高三一模数学试卷
8 . 对于非空集合,定义其在某一运算(统称乘法)“×”下的代数结构称为“群”,简记为.而判断是否为一个群,需验证以下三点:
1.(封闭性)对于规定的“×”运算,对任意,都须满足
2.(结合律)对于规定的“×”运算,对任意,都须满足
3.(恒等元)存在,使得对任意
4.(逆的存在性)对任意,都存在,使得
记群所含的元素个数为,则群也称作“阶群”.若群的“×”运算满足交换律,即对任意,我们称为一个阿贝尔群(或交换群).
(1)证明:所有实数在普通加法运算下构成群
(2)记为所有模长为1的复数构成的集合,请找出一个合适的“×”运算使得在该运算下构成一个群,并说明理由;
(3)所有阶数小于等于四的群是否都是阿贝尔群?请说明理由.
2024-03-07更新 | 563次组卷 | 3卷引用:2024届高三新高考改革数学适应性练习(九省联考题型)
9 . 英国数学家泰勒发现了如下公式:其中为自然对数的底数,.以上公式称为泰勒公式.设,根据以上信息,并结合高中所学的数学知识,解决如下问题.
(1)证明:
(2)设,证明:
(3)设,若的极小值点,求实数的取值范围.
10 . 给出下列两个定义:
I.对于函数,定义域为,且其在上是可导的,若其导函数定义域也为,则称该函数是“同定义函数”.
II.对于一个“同定义函数”,若有以下性质:
;②,其中为两个新的函数,的导函数.
我们将具有其中一个性质的函数称之为“单向导函数”,将两个性质都具有的函数称之为“双向导函数”,将称之为“自导函数”.
(1)判断函数是“单向导函数”,或者“双向导函数”,说明理由.如果具有性质①,则写出其对应的“自导函数”;
(2)已知命题是“双向导函数”且其“自导函数”为常值函数,命题.判断命题的什么条件,证明你的结论;
(3)已知函数.
①若的“自导函数”是,试求的取值范围;
②若,且定义,若对任意,不等式恒成立,求的取值范围.
共计 平均难度:一般