名校
解题方法
1 . 已知函数,,其中为自然对数的底数.
(1)证明:时,;
(2)求函数在内的零点个数;
(3)若,求的取值范围.
(1)证明:时,;
(2)求函数在内的零点个数;
(3)若,求的取值范围.
您最近一年使用:0次
2 . 如图,已知双曲线的离心率为2,点在C上,A,B为双曲线的左、右顶点,为右支上的动点,直线AP和直线x=1交于点N,直线NB交C的右支于点Q.(1)求C的方程;
(2)探究直线PQ是否过定点,若过定点,求出该定点坐标,请说明理由;
(3)设S1,S2分别为△ABN和△NPQ的外接圆面积,求的取值范围.
(2)探究直线PQ是否过定点,若过定点,求出该定点坐标,请说明理由;
(3)设S1,S2分别为△ABN和△NPQ的外接圆面积,求的取值范围.
您最近一年使用:0次
2024-06-20更新
|
332次组卷
|
6卷引用:福建省福州市八县市一中2024届高三模拟预测数学试题
福建省福州市八县市一中2024届高三模拟预测数学试题安徽省池州市第一中学2024届高三第一次模拟联合检测数学试题吉林市第一中学2024届高三高考适应性训练(二)数学试题2024届吉林省吉林市第一中学高三数学适应性试卷(二)(已下线)专题7 圆锥曲线硬解定理【讲】(已下线)2025年新高考数学一轮复习收官卷02
名校
解题方法
3 . 已知线段是圆的一条长为2的弦,则( )
A.1 | B.2 | C.3 | D.4 |
您最近一年使用:0次
名校
4 . 已知某种机器的电源电压U(单位:V)服从正态分布.其电压通常有3种状态:①不超过200V;②在200V~240V之间③超过240V.在上述三种状态下,该机器生产的零件为不合格品的概率分别为0.15,0.05,0.2.
(1)求该机器生产的零件为不合格品时,电压不超过200V的概率;
(2)从该机器生产的零件中随机抽取n()件,记其中恰有2件不合格品的概率为,求取得最大值时n的值.
附:若,取,.
(1)求该机器生产的零件为不合格品时,电压不超过200V的概率;
(2)从该机器生产的零件中随机抽取n()件,记其中恰有2件不合格品的概率为,求取得最大值时n的值.
附:若,取,.
您最近一年使用:0次
2024-06-16更新
|
960次组卷
|
3卷引用:福建省福州市八县市一中2024届高三模拟预测数学试题
名校
解题方法
5 . 已知函数在点处的切线平行于直线.
(1)若对任意的恒成立,求实数的取值范围;
(2)若是函数的极值点,求证:.
(1)若对任意的恒成立,求实数的取值范围;
(2)若是函数的极值点,求证:.
您最近一年使用:0次
2024-06-16更新
|
711次组卷
|
2卷引用:福建省福州市八县市一中2024届高三模拟预测数学试题
名校
6 . 已知点在抛物线:()上,为的焦点,则( )
A.3 | B.4 | C.5 | D.6 |
您最近一年使用:0次
7 . 将甲、乙等5名同学分配到3个社区进行志愿服务,要求每人只去一个社区,每个社区不能少于1人,且甲、乙在同一社区,则不同的安排方法数为( )
A.54 | B.45 | C.36 | D.27 |
您最近一年使用:0次
8 . 在中,角所对应的边分别为,点为边的中点,若,,则( )
A. | B. | C. | D. |
您最近一年使用:0次
名校
解题方法
9 . 如图,在四棱锥中,是以为斜边的等腰直角三角形,,,,,分别为的中点.(1)证明:四点共面;
(2)求直线与平面所成角的正弦值.
(2)求直线与平面所成角的正弦值.
您最近一年使用:0次
名校
10 . 当药品注射到人体内,它在血液中的残余量会以每小时的速度减少,另一种药物注射到人体内,它在血液中的残余量会以每小时的速度减少.现同时给两位患者分别注射药品A和药品B,当两位患者体内药品的残余量恰好相等时,所经过的时间约为( )(参考数据:)
A. | B. | C. | D. |
您最近一年使用:0次