组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 143 道试题
1 . 已知正实数满足是自然对数的底数,),则(       
A.B.
C.的最大值为D.方程无实数解
7日内更新 | 104次组卷 | 1卷引用:江苏省扬州市2024届高三下学期高考考前调研测试数学试题
解答题-应用题 | 适中(0.65) |
名校
2 . 杭州是国家历史文化名城,为了给来杭州的客人提供最好的旅游服务,某景点推出了预订优惠活动,下表是该景点在某App平台10天预订票销售情况:
日期12345678910
销售量(万张)1.931.951.971.982.012.022.022.052.070.5
经计算可得:.
(1)因为该景点今年预订票购买火爆程度远超预期,该App平台在第10天时系统异常,现剔除第10天数据,求关于的线性回归方程(结果中的数值用分数表示);
(2)该景点推出团体票,每份团体票包含四张门票,其中张为有奖门票(可凭票兑换景点纪念品),的分布列如下:
234
今从某份团体票中随机抽取2张,恰有1张为有奖门票,求该份团体票中共有3张有奖门票的概率.
附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:
3 . 某外来入侵植物生长迅速,繁殖能力强,大量繁殖会排挤本地植物,容易形成单一优势种群,导致原有植物种群的衰退甚至消失,使当地生态系统的物种多样性下降,从而破坏生态平衡.假如不加控制,它的总数量每经过一年就增长一倍.则该外来入侵植物由入侵的1株变成100万株大约需要(       )(参考数据:
A.40年B.30年C.20年D.10年
4 . 在四棱锥PABCD中,,正方形ABCD的边长为2,平面ABCD,则下列选项正确的是(       
A.该四棱锥的外接球表面积为
B.若点EPA的中点,则平面PDC
C.若点Q内(含边界),且,则BQ长度的最大值为
D.若点M在正方形ABCD内(不含边界),且,则四棱锥PAMCD的体积的最大值为
2024-06-15更新 | 126次组卷 | 1卷引用:江苏省扬州中学2024届高三下学期全真模拟数学试卷
5 . 将正数用科学记数法表示为,则把分别叫做的首数和尾数,分别记为,下列说法正确的是(       
A.若,则
B.若,则
C.若,则
D.若,则
6 . “直播的尽头是带货”,如今网络直播带货越来越火爆,但商品的质量才是一个主播能否持久带货的关键.某主播委托甲、乙两个工厂为其生产加工商品,为了了解商品质量情况,分别从甲、乙两个工厂各随机抽取了100件商品,根据商品质量可将其分为一、二、三等品,统计的结果如下图:

(1)根据独立性检验,判断是否有的把握认为商品为一等品与加工工厂有关?
(2)将样本数据的频率视为概率,现在甲、乙工厂为该主播进行商品展示活动,每轮活动分别从甲、乙工厂中随机挑选一件商品进行展示,求在两轮活动中恰有三个一等品的概率;
(3)综合各个方面的因素,最终该主播决定以后只委托甲工厂为其生产商品,已知商品随机装箱出售,每箱30个.商品出厂前,工厂可自愿选择是否对每箱商品进行检验.若执行检验,则每个商品的检验费用为10元,并将检验出的三等品更换为一等品或二等品;若不执行检验,则对卖出的每个三等品商品支付100元赔偿费用.将样本数据的频率视为概率,以整箱检验费用的期望记为,所有赔偿费用的期望记为,以的大小关系作为决策依据,判断是否需要对每箱商品进行检验?请说明理由.

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

2024-06-02更新 | 771次组卷 | 2卷引用:江苏省扬州市第一中学2023-2024学年高二下学期5月教学质量调研评估数学试题
7 . 已知P是边长为1的正六边形内一点(含边界),且,则下列正确的是(       
A.的面积为定值B.使得
C.的取值范围是D.的取值范围是
2024-05-08更新 | 259次组卷 | 3卷引用:江苏省扬州市新华中学2023-2024学年高一下学期5月月考数学试题
8 . 已知焦点在轴上,中心在坐标原点的等轴双曲线经过点,过点作两条互相垂直的直线分别交双曲线于两点.
(1)若为等腰直角三角形,求边所在的直线方程;
(2)判断原点的外接圆的位置关系,并说明理由.
2024-04-22更新 | 888次组卷 | 1卷引用:江苏省扬州中学、盐城中学、淮阴中学、丹阳中学四校2023-2024学年高三下学期调研测试联考数学试卷
9 . 一个三棱锥形木料,其中是边长为的等边三角形,底面,二面角的大小为,则点A到平面PBC的距离为__________.若将木料削成以A为顶点的圆锥,且圆锥的底面在侧面PBC内,则圆锥体积的最大值为_________
10 . 如果存在实数对使函数,那么我们就称函数为实数对的“正余弦生成函数”,实数对为函数的“生成数对”;
(1)求函数的“生成数对”;
(2)若实数对的“正余弦生成函数”处取最大值,其中,求的取值范围;
(3)已知实数对为函数的“生成数对”,试问:是否存在正实数使得函数的最大值为?若存在,求出的值;若不存在,说明理由.
共计 平均难度:一般