组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 833 道试题
1 . 如图是一个棱长为2的正方体的展开图,其中分别是棱的中点.请以三点所在面为底面将展开图还原为正方体.

(1)求证:点在平面内;
(2)用平面截正方体,将正方体分成两个几何体,两个几何体的体积分别为,试判断体积较小的几何体的形状(不需要证明),并求的值.
2 . 已知函数,(其中是自然对数的底数)
(1)判断函数上的单调性(不必证明);
(2)求证:函数内存在零点,且
(3)在(2)的条件下,求使不等式成立的整数的最大值.
(参考数据:
2024-01-25更新 | 143次组卷 | 1卷引用:黑龙江省齐齐哈尔市2023-2024学年高一上学期1月期末考试数学试题
3 . 等腰梯形中,.若点均在上,且.如图(一)所示,沿折起,沿折起,使两点重合为
   
(1)若,如图(二)所示,求证:平面平面
(2)若中点,当重合于时,如图(三)所示,求与平面所成角的余弦值;
(3)请设计一个翻折方案使四棱锥的外接球半径为,证明你的结论,并求此方案下的的长度及的大小.
2023-07-18更新 | 315次组卷 | 1卷引用:黑龙江省哈尔滨市第三中学校2022-2023学年高一下学期期末数学试题
4 . 如图①所示,已知正三角形与正方形,将沿翻折至所在的位置,连接,得到如图②所示的四棱锥.已知上一点,且满足.

(1)求证:平面
(2)在线段上是否存在一点,使得平面.若存在,指出点的位置,并证明你的结论;若不存在,请说明理由.
2023-04-19更新 | 572次组卷 | 4卷引用:黑龙江省齐齐哈尔市第八中学校2022-2023学年高一下学期期末数学试题
5 . 已知函数的定义域是,对定义域的任意都有,且当时,
(1)求证:
(2)试判断的单调性并用定义证明你的结论;
(3)解不等式
2022-04-08更新 | 1891次组卷 | 5卷引用:黑龙江省绥化市第一中学2020-2021学年高一上学期期中考试数学试题
6 . 如图在四棱锥P - ABCD中,底面ABCD是矩形,点EF分别是棱PCPD的中点.

(1)求证:EF∥平面PAB
(2)若AP=AD,且平面PAD⊥平面ABCD,证明AF⊥平面PCD.
2021-08-28更新 | 1655次组卷 | 12卷引用:黑龙江省鹤岗市第一中学2018-2019学年高一下学期期末数学(理)试题
7 . 已知函数,而函数的图象与的图象关于轴对称.
(1)直接写出函数的解析式;
(2)令.判断函数的奇偶性并证明;
(3)求证:函数是定义域上的增函数.
2021-01-09更新 | 147次组卷 | 1卷引用:黑龙江省哈尔滨市道里区第三中学校2020-2021学年高一上学期12月月考数学试题
8 . 已知函数其反函数为
(1)求证:对任意都有,对任意都有
(2)令,讨论的定义域并判断其单调性(无需证明).
(3)当时,求函数的值域;
2019-11-30更新 | 437次组卷 | 1卷引用:黑龙江省大庆市实验中学2019-2020学年高一上学期11月月考数学试题
9 . 用函数单调性定义证明,求证:函数在区间上是单调增函数
10 . 如图,已知点P在圆柱OO1的底面⊙O上,分别为⊙O、⊙O1的直径,且平面

(1)求证:
(2)若圆柱的体积
①求三棱锥A1﹣APB的体积.
②在线段AP上是否存在一点M,使异面直线OM与所成角的余弦值为?若存在,请指出M的位置,并证明;若不存在,请说明理由.
共计 平均难度:一般