组卷网 > 知识点选题 > 计数原理
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 44 道试题
1 . 为了迎接到校访问的同学,需要分上午、下午和晚上三个组各安排5名本校学生作为志愿者负责接待,并要求下午组的志愿者不能与上午组、晚上组的重复.某班共有40名学生,其中22名女生和18名男生,现准备从中选择志愿者.
(1)共有多少种选法?(不计算出具体的数字,列出式子即可)
(2)如果下午组中有一名男生请假,需要从班上的非志愿者中选一名男生替代,那么至少有多少种选法?
(3)如果三个组的志愿者都不能重复,且性别不全相同,那么共有多少种选法?(不计算出具体的数字,列出式子即可)
2022-06-07更新 | 234次组卷 | 1卷引用:广西河池市2021-2022学年高二下学期八校第二次联考数学(理)试题
2 . 为了迎接到校访问的同学,需要分上午、下午和晚上三个组各安排5名本校学生作为志愿者负责接待,并要求下午组的志愿者不能与上午组、晚上组的重复.某班共有40名学生,其中22名女生和18名男生,现准备从中选择志愿者.
(1)共有多少种选法?(可以不计算出具体的数字,列出式子即可)
(2)如果下午组中有一名男生请假,需要从班上的非志愿者中选一名男生替代,那么至少有多少种选法?
(3)如果三个组的志愿者都不能重复,且都要有男生和女生,那么共有多少种选法?
2022-04-01更新 | 346次组卷 | 1卷引用:湖南省株洲市炎陵县第一中学2021-2022学年高二下学期3月月考数学试题
3 . 某单位在“全民健身日”举行了一场趣味运动会,其中一个项目为投篮游戏.游戏的规则如下:每局游戏需投篮3次,若投中的次数多于未投中的次数,该局得3分,否则得1分.已知甲投篮的命中率为,且每次投篮的结果相互独立.
(1)求甲在一局游戏中投篮命中次数X的分布列与期望;
(2)若参与者连续玩局投篮游戏获得的分数的平均值大于2,即可获得一份大奖.现有两种选择,要想获奖概率最大,甲应该如何选择?请说明理由.
填空题-单空题 | 较易(0.85) |
名校
4 . 若的展开式中第5项的二项式系数最大,则___________.(写出一个即可)
2022-03-30更新 | 1507次组卷 | 6卷引用:河北省名校联盟2022届高三下学期联合调研数学试题
5 . 某电商为某次活动设计了“和谐”“爱国”“敬业”三种红包,活动规定每人可以依次点击4次,每次都会获得三种红包中的一种,若集齐三种红包即可获奖,且三种红包在4次点击中出现的顺序不同对应的奖次也不同,甲按规定依次点击了4次,直到第4次才获奖,求甲获得奖次的不同情形的种数.
2022-04-15更新 | 197次组卷 | 5卷引用:人教A版(2019) 选修第三册 实战演练 第六章 6.1 课时练习02 分类加法计数原理与分步乘法计数原理(二)
6 . 理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:

学生序号

1

2

3

4

5

6

7

物理成绩

65

70

75

81

85

87

93

化学成绩

72

68

80

85

90

86

91

规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.
2019·安徽蚌埠·一模
单选题 | 适中(0.65) |
名校
7 . 某电商为某次活动设计了“和谐”、“爱国”、“敬业”三种红包,活动规定每人可以依次点击4次,每次都会获得三种红包的一种,若集全三种即可获奖,但三种红包出现的顺序不同对应的奖次也不同员工甲按规定依次点击了4次,直到第4次才获奖则他获得奖次的不同情形种数为  
A.9B.12C.18D.24
2019-04-12更新 | 1374次组卷 | 9卷引用:6.1分类加法计数原理与分步乘法计数原理 C卷
填空题-双空题 | 适中(0.65) |
8 . 十八世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸连接起来.有人提出一个问题:一个步行者怎样才能不重复、不遗漏地一次走完这七座桥,最后回到出发点,这就是著名的哥尼斯堡七桥问题(下简称七桥问题),很多人尝试解决这个问题,但绞尽脑汁,就是无法找到答案.直到1736年,29岁的欧拉以拉丁文正式发表了论文《关于位置几何问题的解决》,文中详细讨论了七桥问题并作了一些推广.该论文被认为是图论、拓扑学和网络科学的发端.图1是欧拉当年解决七桥问题的手绘图,图2是该问题相应的示意图,其中ABCD四个点代表陆地,连接这些点的边就是桥.欧拉将七桥问题转化成一个几何问题——一笔画问题.一笔画问题中,要求不遗漏地依次走完每一条边,允许重复走过某些结点,可以不回到出发点,但不允许重复走过任何一条边.

在图3中,根据以上一笔画问题的规则,起点可以是___________,不同的走法总数为___________.
2022-05-16更新 | 211次组卷 | 4卷引用:安徽省示范高中培优联盟2021-2022学年高二下学期春季联赛数学试题
2020高三·全国·专题练习
9 . 年春节联欢晚会以“共圆小康梦、欢乐过大年”为主题,突出时代性、人民性、创新性,节目内容丰富多彩,呈现形式新颖多样.某小区的个家庭买了张连号的门票,其中甲家庭需要张连号的门票,乙家庭需要张连号的门票,剩余的张随机分到剩余的个家庭即可,则这张门票不同的分配方法的种数为( )
A.
B.
C.
D.
2021-01-16更新 | 2233次组卷 | 11卷引用:第十二章 统计与概率专练2—排列组合2-2022届高三数学一轮复习
18-19高二·全国·课后作业
填空题-单空题 | 较难(0.4) |
10 . 从由1,2,3,4,5,6组成的没有重复数字的六位数中任取5个不同的数,其中满足1,3都不与5相邻的六位偶数的个数为随机变量X,则P(X=2)=_____.(结果用式子表示即可)
2019-01-22更新 | 2290次组卷 | 6卷引用:专题7综合闯关(提升版)
共计 平均难度:一般