组卷网 > 知识点选题 > 利用导数解决实际应用问题
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 1664 道试题
1 . 如图,正四棱锥每一个侧面都是边长为4的正三角形,若点M在四边形ABCD内(包含边界)运动,NPD的中点,则(       

A.当MAD的中点时,异面直线MNPC所成角为
B.当平面PBC时,点M的轨迹长度为
C.当时,点MAB的距离可能为
D.存在一个体积为的圆柱体可整体放入正四棱锥
2024-04-19更新 | 341次组卷 | 1卷引用:2024届贵州省贵阳市高三下学期适应性考试数学试题
2 . 易拉罐用料最省问题的研究.小明同学最近注意到一条新闻,易拉罐(如图所示)作为饮品的容器,每年的用量可达数万亿个.这让他想到一个用料最优化的问题,即在易拉罐的体积(容积)一定的情况下,如何确定易拉罐的高和半径才能使得用料最省?他研究发现易拉罐的上盖下底和侧壁的厚度是不同的,进而结合数学建模知识进行了深入研究.以下是小明的研究过程,请回答其中问题.

模型假设:①易拉罐近似看成一个圆柱体,容积一定;②上盖下底侧壁的厚度处处均匀;③上盖下底侧壁所用金属相同; ④易拉罐接口处的所用材料忽略不计.
(1)建立模型问题1: 填空:记圆柱容积为,高为,底面半径为, 则___________; ①记上盖下底和侧壁的厚度分别为(底面半径都为),且侧壁展开可看成长方体(长、宽、高分别为),金属用料总量为C(接口材料忽略不计),则 ___________ ;②因为都是常数,不妨设,则由① ②可得用料总量的函数可简化为 _____________(用表示)   ③;
(2)求解模型:问题2求解当取何值时(用表示),取得最小值,即用料最省?(写出解答过程)检验模型:小明上网查阅到目前330毫升可乐易拉罐的数据,得知,代入(3)的模型结果,经计算得经验算,确认计算无误,但是这与实际罐体半径差异较大.实际上,在经济利益驱动之下,目前的罐体成本应该已经达最优;
(3)模型评价与改进:问题3模型计算结果与现实数据存在较大差异的原因可能为_________相应改进措施为__________.
注:只需一条原因及相应改进措施即可
2024-04-18更新 | 42次组卷 | 1卷引用:广东省中山市华侨中学2023-2024学年高二下学期第一次段考数学试题
3 . 某工件是底面半径为2,母线为4的圆锥,现将该工件通过切削,加工成一个长方体新工件,并使新工件的一个面落在原工件的一个面内,则新工件体积的最大值为___________
2024-04-18更新 | 140次组卷 | 2卷引用:四川省成都市石室中学2023-2024学年高二下学期四月月考数学试题
4 . 某口罩生产企业,在疫情期间每月生产万件N95口罩的利润函数为(单位:万元).
(1)当时,求企业平均每万件月利润的最大值.
(2)当月产量为多少万件时,企业的月利润最大?请为企业生产经营提一些合理建议.
2024-04-17更新 | 120次组卷 | 1卷引用:广东省东莞市东莞中学2023-2024学年高二下学期第一次段考数学试题
2024高三·全国·专题练习
5 . 圆O的半径为R,从中剪去一个扇形,剩余部分制成一个圆锥,则何时这个圆锥的体积最大?
2024-04-15更新 | 86次组卷 | 1卷引用:第二章 立体几何中的计算 专题七 空间范围与最值问题 微点5 面积、体积的范围与最值问题(三)【基础版】
6 . 将一条长为6的铁丝截成9段,拼成一个正三棱柱,求该三棱柱体积的最大值.
2024-04-15更新 | 59次组卷 | 1卷引用:陕西省西安市长安区第三中学2023-2024学年高二下学期3月月考数学试卷
7 . 已知球的表面积为,直四棱柱的顶点均在球的球面上,则该直四棱柱的体积的最大值为______
2024-04-12更新 | 79次组卷 | 1卷引用:2024年普通高等学校招生全国统一考试数学理科猜题卷(五)
8 . 某零食生产厂家准备用长为,宽为4cm的长方形纸板剪去阴影部分(如图,阴影部分是全等四边形),再将剩余部分折成一个底面为长方形的四棱锥形状的包装盒,则该包装盒容积的最大值为_________.

   

2024-04-11更新 | 437次组卷 | 1卷引用:辽宁省名校联盟2024年高考模拟卷(信息卷)数学(五)
2024·全国·模拟预测
9 . 已知球的表面积为,直四棱柱的顶点均在球的表面上,则直四棱柱的体积的最大值为______
2024-04-11更新 | 62次组卷 | 1卷引用:2024年普通高等学校招生全国统一考试数学文科猜题卷(九)
10 . 上海市政府实施“景观工程”,对现有平顶的民用多层住宅进行“平改坡”,计划将平顶房屋改为尖顶,并铺上彩色瓦片.现对某幢房屋有两种改造方案:方案中坡顶,如图1所示,为底面是等边三角形的直三棱柱,尖顶屋脊与房屋长度等长,有两个坡面需铺上瓦片.方案中坡顶,如图2所示,为图削去两端相同的两个三棱锥而得,尖顶屋脊比房屋长度短,有四个坡面需铺上瓦片.若房屋长,宽,屋脊高为,要使铺设的瓦片比较省,请你选择两种方案中的哪一个?
2024-04-09更新 | 69次组卷 | 1卷引用:第五章 破解立体几何开放探究问题 专题二 立体几何开放题的解法 微点2 立体几何开放题的解法(二)【培优版】
共计 平均难度:一般