组卷网 > 章节选题 > 选修1-1
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 384 道试题
1 . 已知椭圆的左、右焦点分别为,过点的动直线lEAB两点,且点Ax轴上方,直线E交于另一点C,直线E于另一点D
(1)求的面积最大值;
(2)证明:直线CD过定点.
7日内更新 | 86次组卷 | 3卷引用:云南省昆明市第一中学2024届高三第十次考前适应性训练数学试卷
2 . 如图,矩形中,分别是矩形四条边的中点,设,设直线的交点在曲线上.

(1)求曲线的方程;
(2)直线与曲线交于两点,点在第一象限,点在第四象限,且满足直线与直线的斜率之积为,若点为曲线的左顶点,且满足,直线交于,直线交于.
①证明:为定值;
②是否存在常数,使得四边形的面积是面积的倍?若存在求出,若不存在说明理由.
2024-06-13更新 | 53次组卷 | 1卷引用:云南省昆明市第三中学2024届高三下学期高考考前检测数学试卷
3 . 已知抛物线,焦点为,点为曲线的准线与对称轴的交点,过的直线与抛物线交于两点.
(1)证明:当时,与抛物线相切;
(2)当时,求.
2024-06-13更新 | 32次组卷 | 1卷引用:云南省曲靖市第一中学2024届高三教学质量检测(八)数学试卷
4 . 英国物理学家、数学家艾萨克·牛顿与德国哲学家、数学家戈特弗里德·莱布尼茨各自独立发明了微积分,其中牛顿在《流数法与无穷级数》一书中,给出了高次代数方程的一种数值解法——牛顿法.如图,具体做法如下:一个函数的零点为,先在轴找初始点,然后作在点处切线,切线与轴交于点,再作在点处切线,切线与轴交于点,再作在点处切线,以此类推,直到求得满足精度的零点近似解为止.

(1)设函数,初始点,精度,若按上述算法,求函数的零点近似解满足精度时的最小值(参考数据:);
(2)设函数,令,且,若函数,证明:当时,.
2024-06-13更新 | 56次组卷 | 1卷引用:云南省曲靖市第一中学2024届高三教学质量检测(八)数学试卷
5 . 已知函数
(1)求的最小值
(2)证明:
6 . 设是由满足下列条件的函数构成的集合:①方程有实根;②在定义域区间上可导,且满足.
(1)判断是否是集合中的元素,并说明理由;
(2)设函数为集合中的任意一个元素,证明:对其定义域区间中的任意,都有.
7 . 已知函数
(1)当时,证明:对任意
(2)若是函数的极值点,求实数的值.
2024-05-31更新 | 495次组卷 | 2卷引用:云南省昆明市2023-2024学年高三三模数学试题
8 . 已知函数.
(1)当时,求的单调区间;
(2)证明:若曲线与直线有且仅有两个交点,求的取值范围.
2024-05-28更新 | 729次组卷 | 1卷引用:云南省昆明市第一中学2024届高中新课标高三第九次考前适应性训练数学试卷
9 . 椭圆的左、右焦点分别为,点在椭圆上运动(与左、右顶点不重合),已知的内切圆圆心为,延长轴于点.
(1)当点运动到椭圆的上顶点时,求
(2)当点在椭圆上运动时,为定值,求内切圆圆心的轨迹方程;
(3)点关于轴对称的点为,直线相交于点,已知点的轨迹为,过点的直线与曲线交于两点,试说明:是否存在直线,使得点为线段的中点,若存在,求出直线的方程;若不存在,请说明理由.
2024-05-24更新 | 270次组卷 | 1卷引用:云南省2024届高三学期”3_3_3“高考备考诊断性联考卷(二)数学试题
10 . 已知函数.
(1)当时,求函数的最小值;
(2)讨论函数的单调性.
2024-05-23更新 | 412次组卷 | 1卷引用:云南省2024届高三“3+3+3”高考备考诊断性联考卷(三)数学试卷
共计 平均难度:一般