1 . 已知抛物线,动圆,为抛物线上一动点,过点作圆的两条切线,切点分别为.
(1)若求的最小值;
(2)若过圆心作抛物线的两条切线,切点分别为.
(Ⅰ)求证:直线过定点;
(Ⅱ)若线段的中点为,连交抛物线于点,记的面积为,求的表达式及其最小值.
(1)若求的最小值;
(2)若过圆心作抛物线的两条切线,切点分别为.
(Ⅰ)求证:直线过定点;
(Ⅱ)若线段的中点为,连交抛物线于点,记的面积为,求的表达式及其最小值.
您最近一年使用:0次
名校
解题方法
2 . 如图,在正四面体中,已知,为棱的中点. 现将等腰直角三角形绕其斜边旋转一周(假设可以穿过正四面体内部),则在旋转过程中,下列结论正确的是( )
A.三角形绕斜边旋转一周形成的旋转体体积为 |
B.四点共面 |
C.点到的最近距离为 |
D.异面直线与所成角的范围为 |
您最近一年使用:0次
名校
3 . 设为正整数,集合对于,设集合.
(1)若,写出集合;
(2)若,且满足令 ,求证: ;
(3)若,且 ,求证: .
(1)若,写出集合;
(2)若,且满足令 ,求证: ;
(3)若,且 ,求证: .
您最近一年使用:0次
2024-05-09更新
|
1160次组卷
|
4卷引用:安徽省黄山市屯溪第一中学2024-2025学年高一上学期10月数学试卷
安徽省黄山市屯溪第一中学2024-2025学年高一上学期10月数学试卷北京市朝阳区2024届高三下学期质量检测二数学试题(已下线)专题1 以集合为主体的新定义压轴大题【讲】北京市北京师范大学第二附属中学2025届高三上学期期中考试数学试题
名校
解题方法
4 . 黄山是中国著名的旅游胜地,有许多值得打卡的旅游景点,其中包括黄山风景区,齐云山,宏村,徽州古城等.甲,乙,丙人准备前往黄山风景区,齐云山,宏村,徽州古城这个景点游玩,其中甲和乙已经去过黄山风景区,本次不再前往黄山风景区游玩.若甲,乙,丙每人选择一个或两个景点游玩,则不同的选择有( )
A.种 | B.种 | C.种 | D.种 |
您最近一年使用:0次
2024-04-13更新
|
1011次组卷
|
3卷引用:安徽省黄山市2024届高中毕业班第二次质量检测数学试题
名校
解题方法
5 . 如图所示.已知椭圆方程为,F1、F2为左右焦点,下列命题正确的是( )
A.P为椭圆上一点,线段PF1中点为Q,则为定值 |
B.直线与椭圆交于R ,S两点,A是椭圆上异与R ,S的点,且、均存在,则 |
C.若椭圆上存在一点M使,则椭圆离心率的取值范围是 |
D.四边形 为椭圆内接矩形,则其面积最大值为2ab |
您最近一年使用:0次
2023-12-02更新
|
458次组卷
|
4卷引用:安徽省黄山市八校联盟2023-2024学年高二上学期期中考试数学试题
名校
6 . 已知为圆锥底面圆的直径,,,点为圆上异于的一点,为线段上的动点(异于端点),则( )
A.直线与平面所成角的最大值为 |
B.圆锥内切球的体积为 |
C.棱长为的正四面体可以放在圆锥内 |
D.当为的中点时,满足的点有2个 |
您最近一年使用:0次
2023-12-02更新
|
753次组卷
|
4卷引用:安徽省黄山市八校联盟2023-2024学年高二上学期期中考试数学试题
7 . 某高中学校在5月20日召开高三毕业典礼,为给高三学生创造轻松的氛围,典礼上有一个“开盲盒”游戏环节,主持人拿出10个盲盒,每个盲盒中装有一个学校标志建筑物的模型,其中有3个“校园”模型,4个“图书馆”模型,2个“名人馆”模型,1个“科技馆”模型.
(1)一次取出2个盲盒,求2个盲盒为同一种模型的概率;
(2)依次不放回地从中取出2个盲盒,求第2次取到的是“图书馆”模型的概率;
(3)甲同学是个“科技狂热粉”,特别想取到“科技馆”模型,主持人为了满足甲同学的愿望,设计如下游戏规则:在一个不透明的袋子中装有大小完全相同的10个小球,其中9个白球,1个红球,有放回的每次摸球一个,摸到红球就可以取走“科技馆”模型,游戏结束.现在让甲同学参与游戏,规定甲同学可以按游戏规则最多摸球10次,若第10次还是摸到白球,主持人直接赠予甲同学“科技馆”模型.设他经过第X次(X=1,2,…,10)摸球并获得“科技馆”模型,求X的分布列.
(1)一次取出2个盲盒,求2个盲盒为同一种模型的概率;
(2)依次不放回地从中取出2个盲盒,求第2次取到的是“图书馆”模型的概率;
(3)甲同学是个“科技狂热粉”,特别想取到“科技馆”模型,主持人为了满足甲同学的愿望,设计如下游戏规则:在一个不透明的袋子中装有大小完全相同的10个小球,其中9个白球,1个红球,有放回的每次摸球一个,摸到红球就可以取走“科技馆”模型,游戏结束.现在让甲同学参与游戏,规定甲同学可以按游戏规则最多摸球10次,若第10次还是摸到白球,主持人直接赠予甲同学“科技馆”模型.设他经过第X次(X=1,2,…,10)摸球并获得“科技馆”模型,求X的分布列.
您最近一年使用:0次
8 . 如图,在中,,cm,cm,D是BC边上一点,cm,点P为边AC上一动点(点P与A、C不重合),过点P作,交AD于点E.点P以1cm/s的速度从A到C匀速运动.
(2)当t为何值时,以PE为半径的⊙E与以DB为半径的⊙D外切?并求此时的正切值.
(1)设点P的运动时间为t(s),DE的长为y(cm),求y关于t的函数关系式,并写出的取值范围;
(2)当t为何值时,以PE为半径的⊙E与以DB为半径的⊙D外切?并求此时的正切值.
您最近一年使用:0次
2023-06-13更新
|
149次组卷
|
3卷引用:安徽省黄山市屯溪第一中学2022-2023学年高一上学期入学实验班选拔考试模拟试卷(一)
名校
9 . 现有一种不断分裂的细胞,每个时间周期内分裂一次,一个细胞每次分裂能生成一个或两个新的细胞,每次分裂后原细胞消失,设每次分裂成一个新细胞的概率为,分裂成两个新细胞的概率为;新细胞在下一个周期内可以继续分裂,每个细胞间相互独立.设有一个初始的细胞,在第一个周期中开始分裂,其中.
(1)设结束后,细胞的数量为,求的分布列和数学期望;
(2)设结束后,细胞数量为的概率为 .
(i)求;
(ii)证明:.
(1)设结束后,细胞的数量为,求的分布列和数学期望;
(2)设结束后,细胞数量为的概率为 .
(i)求;
(ii)证明:.
您最近一年使用:0次
2023-06-03更新
|
2603次组卷
|
6卷引用:安徽省黄山市屯溪第一中学2024届高三第二次模拟考试数学试题(实验班用)
安徽省黄山市屯溪第一中学2024届高三第二次模拟考试数学试题(实验班用)山东省泰安肥城市2023届高考适应性训练数学试题(一)(已下线)模块三 专题7 随机变量及其分布列--拔高能力练(人教A版)(已下线)模块三 专题5 概率--大题分类练--拔高能力练(北师大2019版 高二)湖南省长沙市长郡中学2024届高三上学期月考数学试题(五)安徽省2024届新高考数学预测模拟卷(六)
10 . 点是直线上的一个动点,,是圆上的两点.则( )
A.存在,,,使得 |
B.若,均与圆相切,则弦长的最小值为 |
C.若,均与圆相切,则直线经过一个定点 |
D.若存在,,使得,则点的横坐标的取值范围是 |
您最近一年使用:0次
2023-05-24更新
|
1596次组卷
|
7卷引用:安徽省黄山市屯溪第一中学2024届高三第二次模拟考试数学试题(实验班用)