组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 683 道试题
1 . 已知递增数列的前n项和为,且
(1)求数列的通项公式;
(2)设
(ⅰ)求数列的通项公式;
(ⅱ)求
7日内更新 | 80次组卷 | 1卷引用:天津市河西区2023-2024学年高三下学期总复习质量调查(三)数学试卷
2 . 已知分别为椭圆的左、右焦点,焦距为2,分别为椭圆C的上、下顶点,椭圆C的右顶点为A,直线的斜率之积为
(1)求椭圆C的标准方程;
(2)设过右顶点A的直线C交于另外一点B,与垂直的直线交于点M,与y轴交于点N;若,且O为坐标原点),求直线的斜率.
7日内更新 | 185次组卷 | 2卷引用:天津市新华中学2023-2024学年高三下学期校模数学试卷
3 . 已知椭圆)的离心率为分别为椭圆的左顶点和上顶点,为左焦点,且的面积为
(1)求椭圆的标准方程;
(2)设椭圆的右顶点为是椭圆上不与顶点重合的动点.
①若点),点在椭圆上且位于轴下方,设的面积分别为.若,求点的坐标;
②若直线与直线交于点,直线轴于点,设直线和直线的斜率为,求证:为定值,并求出此定值.
7日内更新 | 37次组卷 | 1卷引用:天津市滨海新区2023-2024学年高三第三次模拟考试数学试卷
4 . 已知函数
(1)若,函数存在斜率为3的切线,求实数的取值范围;
(2)若,试讨论函数的单调性;
(3)若,设函数的图象与函数的图象交于两点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求出点的横坐标;若不存在,请说明理由.
7日内更新 | 20次组卷 | 1卷引用:天津市和平区2024届高三第三次质量调查(三模)数学试卷
5 . 已知等差数列的前项和为,数列是公比大于1的等比数列,且
(1)求的通项公式;
(2)数列的所有项按照“当为奇数时,放在的前面;当为偶数时,放在的前面”的要求进行“交叉排列”,得到一个新数列,…,求数列的前7项和及前项和
(3)是否存在数列,满足等式成立,若存在,求出数列的通项公式,若不存在,请说明理由.
7日内更新 | 32次组卷 | 1卷引用:天津市滨海新区2023-2024学年高三第三次模拟考试数学试卷
6 . 等差数列的前项和为),
(1)求的通项公式与前项和
(2)记,当时,试比较的大小;
(3)若,正项等比数列中,首项,数列是公比为4的等比数列,且,求的通项公式与
7日内更新 | 34次组卷 | 1卷引用:天津市和平区2024届高三第三次质量调查(三模)数学试卷
7 . 已知函数.
(1)当时,讨论函数的单调性;
(2)若不等式恒成立,求的取值范围;
(3)在(1)的条件下,设,且.求证:当,且时,不等式成立.
7日内更新 | 54次组卷 | 1卷引用:天津市静海区第一中学2023-2024学年高二下学期6月学业能力调研数学试题
8 . 设函数
(1)求图象上点处的切线方程;
(2)若时恒成立,求的值;
(3)若,证明
7日内更新 | 2509次组卷 | 4卷引用:2024年天津高考数学真题
9 . 已知).
(1)当时,求处的切线方程;
(2)当时,求证:上单调递增;
(3)设,已知,有不等式恒成立,求实数a的取值范围.
7日内更新 | 63次组卷 | 1卷引用:天津市武清区杨村第一中学2023-2024学年高三下学期第二次热身练数学试题
10 . 已知数列是公比大于0的等比数列.其前项和为.若
(1)求数列项和
(2)设
(ⅰ)当时,求证:
(ⅱ)求
2024-06-15更新 | 2266次组卷 | 5卷引用:2024年天津高考数学真题
共计 平均难度:一般