组卷网 > 知识点选题 > 函数的基本性质
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 43 道试题
1 . 函数的定义域均为,若对任意两个不同的实数,均有成立,则称为相关函数对.
(1)判断函数是否为相关函数对,并说明理由;
(2)已知为相关函数对,求实数的取值范围;
(3)已知函数为相关函数对,且存在正实数,对任意实数,均有.求证:存在实数,使得对任意,均有.
7日内更新 | 416次组卷 | 3卷引用:上海市杨浦区2024届高三下学期二模质量调研数学试卷
2 . 已知定义域为的函数,其图象是连续的曲线,且存在定义域也为的导函数.
(1)求函数在点的切线方程;
(2)已知,当满足什么条件时,存在非零实数,对任意的实数使得恒成立?
(3)若函数是奇函数,且满足.试判断对任意的实数是否恒成立,请说明理由.
2024-05-16更新 | 375次组卷 | 2卷引用:上海市奉贤区2024届高三第二次模拟考试数学试题
3 . 函数的表达式为.
(1)若,直线与曲线相切于点,求直线的方程;
(2)函数的最小正周期是,令,将函数的零点由小到大依次记为,证明:数列是严格减数列;
(3)已知定义在上的奇函数满足,对任意,当时,都有.记.当时,是否存在,使得成立?若存在,求出符合题意的;若不存在,请说明理由.
2024-05-09更新 | 216次组卷 | 1卷引用:上海市宝山区2023-2024学年高三下学期二模数学试卷
4 . 已知,记).
(1)当是自然对数的底)时,试讨论函数的单调性和最值;
(2)试讨论函数的奇偶性;
(3)拓展与探究:
① 当在什么范围取值时,函数的图象在轴上存在对称中心?请说明理由;
②请提出函数的一个新性质,并用数学符号语言表达出来.(不必证明)
2024-04-24更新 | 197次组卷 | 1卷引用:上海市静安区2024届高三下学期期中教学质量调研数学试卷
智能选题,一键自动生成优质试卷~
解答题-证明题 | 较难(0.4) |
5 . 已知函数有相同的定义域.若存在常数(),使得对于任意的,都存在,满足,则称函数是函数关于的“函数”.
(1)若,试判断函数是否是关于函数,并说明理由;
(2)若函数均存在最大值与最小值,且函数关于函数又是关于函数,证明:
(3)已知,其定义域均为.给定正实数,若存在唯一的,使得关于函数,求的所有可能值.
2024-04-24更新 | 222次组卷 | 1卷引用:上海市金山区2024届高三二模数学试题
6 . 对于函数,及区间,若存在实数,使得对任意恒成立,则称在区间上“优于”.有以下两个结论:
在区间上优于
②当时,在区间上优于
那么(       
A.①、②均正确B.①正确,②错误
C.①错误,②正确D.①、②均错误
2023-12-18更新 | 314次组卷 | 3卷引用:上海市浦东新区2024届高三上学期期末教学质量检测数学试题
7 . 设函数的定义域为,给定区间若存在,使得,则称函数为区间上的“均值函数”,为函数的“均值点”
(1)试判断函数是否为区间上的“均值函数”,如果是,请求出其“均值点”;如果不是,请说明理由;
(2)已知函数是区间上的“均值函数”,求实数的取值范围;
(3)若函数(常数)是区间上的“均值函数”,且为其“均值点”将区间任意划分成)份,设分点的横坐标从小到大依次为,记再将区间等分成)份,设等分点的横坐标从小到大依次为,记求使得的最小整数的值
2023-12-14更新 | 422次组卷 | 4卷引用:上海市金山区2024届高三上学期质量监控数学试题
8 . 网络购物行业日益发达,各销售平台通常会配备送货上门服务.小金正在配送客户购买的电冰箱,并获得了客户所在小区门户以及建筑转角处的平面设计示意图.

(1)为避免冰箱内部制冷液逆流,要求运送过程中发生倾斜时,外包装的底面与地面的倾斜角不能超过,且底面至少有两个顶点与地面接触.外包装看作长方体,如图1所示,记长方体的纵截面为矩形,而客户家门高度为米,其他过道高度足够.若以倾斜角的方式进客户家门,小金能否将冰箱运送入客户家中?计算并说明理由.
(2)由于客户选择以旧换新服务,小金需要将客户长方体形状的旧冰箱进行回收.为了省力,小金选择将冰箱水平推运(冰箱背面水平放置于带滚轮的平板车上,平板车长宽均小于冰箱背面).推运过程中遇到一处直角过道,如图2所示,过道宽为米.记此冰箱水平截面为矩形.设,当冰箱被卡住时(即点分别在射线上,点在线段上),尝试用表示冰箱高度的长,并求出的最小值,最后请帮助小金得出结论:按此种方式推运的旧冰箱,其高度的最大值是多少?(结果精确到
2023-12-14更新 | 457次组卷 | 3卷引用:上海市金山区2024届高三上学期质量监控数学试题

9 . 若函数的导函数是以为周期的函数,则称函数具有“性质”.


(1)试判断函数是否具有“性质”,并说明理由;
(2)已知函数,其中具有“性质”,求函数上的极小值点;
(3)若函数具有“性质”,且存在实数使得对任意都有成立,求证:为周期函数.

(可用结论:若函数的导函数满足,则(常数).)

2023-12-13更新 | 442次组卷 | 3卷引用:上海市徐汇区2024届高三上学期一模数学试卷

10 . 函数满足:对于任意都有,(常数).给出以下两个命题:①无论取何值,函数不是上的严格增函数;②当时,存在无穷多个开区间,使得,且集合对任意正整数都成立,则(       

A.①②都正确B.①正确②不正确C.①不正确②正确D.①②都不正确
2023-12-13更新 | 348次组卷 | 2卷引用:上海市杨浦区2024届高三上学期模拟质量调研数学试题
共计 平均难度:一般