组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 56 道试题
1 . 悬链线的原理运用于悬索桥、架空电缆、双曲拱桥、拱坝等工程.通过适当建立坐标系,悬链线可为双曲余弦函数的图象,类比三角函数的三种性质:①平方关系:①,②和角公式:,③导数:定义双曲正弦函数
(1)直接写出具有的类似①、②、③的三种性质(不需要证明);
(2)若当时,恒成立,求实数a的取值范围;
(3)求的最小值.
2024-01-27更新 | 2254次组卷 | 8卷引用:压轴题函数与导数新定义题(九省联考第19题模式)练
2 . 定义:若函数图象上恰好存在相异的两点满足曲线处的切线重合,则称为曲线的“双重切点”,直线为曲线的“双重切线”.
(1)直线是否为曲线的“双重切线”,请说明理由;
(2)已知函数求曲线的“双重切线”的方程;
(3)已知函数,直线为曲线的“双重切线”,记直线的斜率所有可能的取值为,若,证明:.
2024-04-17更新 | 1838次组卷 | 9卷引用:专题16 对数平均不等式及其应用【练】
3 . 已知定义在的函数满足:①对恒有;②对任意的正数恒有.则下列结论中正确的有(       
A.
B.过点的切线方程
C.对,不等式恒成立
D.若为函数的极值点,则
2023-12-08更新 | 1702次组卷 | 7卷引用:第五章 一元函数的导数及其应用(压轴题专练,精选34题)-2023-2024学年高二数学单元速记·巧练(人教A版2019选择性必修第二册)
4 . 根据多元微分求条件极值理论,要求二元函数在约束条件的可能极值点,首先构造出一个拉格朗日辅助函数,其中为拉格朗日系数.分别对中的部分求导,并使之为0,得到三个方程组,如下:
,解此方程组,得出解,就是二元函数在约束条件的可能极值点.的值代入到中即为极值.
补充说明:【例】求函数关于变量的导数.即:将变量当做常数,即:,下标加上,代表对自变量x进行求导.即拉格朗日乘数法方程组之中的表示分别对进行求导.
(1)求函数关于变量的导数并求当处的导数值.
(2)利用拉格朗日乘数法求:设实数满足,求的最大值.
(3)①若为实数,且,证明:
②设,求的最小值.
2024-03-27更新 | 1403次组卷 | 4卷引用:压轴题03不等式压轴题13题型汇总-2
智能选题,一键自动生成优质试卷~
5 . 已知是方程的两个实根,且.
(1)求实数的取值范围;
(2)已知,若存在正实数,使得成立,证明:.
2023-05-26更新 | 1515次组卷 | 6卷引用:第九章 导数与三角函数的联袂 专题三 含三角函数的恒成立问题 微点3 三角函数的恒成立问题(三)
6 . 已知函数,则(       
A.曲线处的切线斜率为
B.方程有无数个实数根
C.曲线上任意一点与坐标原点连线的斜率均小于
D.上单调递减
2024-05-17更新 | 1241次组卷 | 4卷引用:3.4 导数的综合运用
7 . 丹麦数学家琴生是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凸凹性与不等式方向留下了很多宝贵的成果.设函数上的导函数为上的导函数记为,若在恒成立,则称函数上为“凸函数”,已知上为“凸函数”,则实数的取值范围是(       
A.B.C.D.
2023-11-01更新 | 1161次组卷 | 16卷引用:第十章 导数与数学文化 微点2 导数与数学文化(二)
8 . 定义函数的曲率函数的导函数),函数处的曲率半径为该点处曲率的倒数,曲率半径是函数图象在该点处曲率圆的半径,则下列说法正确的是(       
A.若曲线在各点处的曲率均不为0,则曲率越大,曲率圆越小
B.函数处的曲率半径为1
C.若圆为函数的一个曲率圆,则圆半径的最小值为2
D.若曲线处的弯曲程度相同,则
9 . 记函数的导函数为,已知,若数列满足,则(       
A.为等差数列B.为等比数列
C.D.
10 . 贝塞尔曲线(Beziercurve)是应用于二维图形应用程序的数学曲线,一般的矢量图形软件通过它来精确画出曲线.三次函数的图象是可由四点确定的贝塞尔曲线,其中的图象上,在点处的切线分别过点.若,则       
A.B.
C.D.
2024-05-17更新 | 961次组卷 | 7卷引用:5.2导数的基本运算
共计 平均难度:一般