组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 403 道试题
1 . 已知①设函数的值域是,对于中的每个,若函数在每一处都等于它对应的,这样的函数叫做函数的反函数,记作,我们习惯记自变量为,因此可改成即为原函数的反函数.易知互为反函数,且.如的反函数是可改写成即为的反函数,互为反函数.②是定义在且取值于的一个函数,定义,则称是函数上的次迭代.例如,则.对于一些相对复杂的函数,为求出其次迭代函数,我们引入如下一种关系:对于给定的函数,若函数的反函数存在,且有,称关于相似,记作,其中称为桥函数,桥函数满足以下性质:
(i)若,则
(ii)若的一个不动点,即,则的一个不动点.
(1)若函数,求(写出结果即可)
(2)证明:若,则
(3)若函数,求(桥函数可选取),若,试选取恰当桥函数,计算
7日内更新 | 36次组卷 | 1卷引用:浙江省金华市卓越联盟2023-2024学年高二下学期5月阶段联考数学试题
2 . 下列说法错误的个数为(       
①已知,若,则
②已知,则
③投掷一枚均匀的硬币5次,已知正面向上不少于3次,则出现5次正面向上的概率为
A.0B.1C.2D.3
7日内更新 | 68次组卷 | 1卷引用:浙江省金华市卓越联盟2023-2024学年高二下学期5月阶段联考数学试题
3 . 当时,对一切恒成立.学生小刚在研究对数运算时,发现有这么一个等式,带着好奇,他进一步对进行深入研究.
(1)若正数满足,当时,求的值;
(2)除整数对,请再举出一个整数对满足
(3)证明:当时,只有一对正整数对使得等式成立.
4 . 对于,定义,其中中最大的数,例如:. 给定正整数,根据以上内容,对于,请回答下列问题:
(1)(用表示);
(2)满足的有序数对有多少个?
(3)满足的有序数对有多少个?
(4)满足的有序数对有多少个?
2024-06-07更新 | 122次组卷 | 1卷引用:浙江省宁波市北仑中学2023-2024学年高二下学期期中考试数学试题
5 . 水平相当的甲、乙、丙三人进行乒乓球擂台赛,每轮比赛都采用3局2胜制(即先贏2局者胜),首轮由甲乙两人开始,丙轮空;第二轮由首轮的胜者与丙之间进行,首轮的负者轮空,依照这样的规则无限地继续下去.
(1)求甲在第三轮获胜的条件下,第二轮也获胜的概率;
(2)求第轮比赛甲轮空的概率;
(3)按照以上规则,求前六轮比赛中甲获胜局数的期望.
2024-06-07更新 | 432次组卷 | 1卷引用:浙江省北斗星盟2023-2024学年高二下学期5月阶段性联考数学试题
6 . 有一款闯关游戏,其规则如下:一颗棋子位于数轴原点处,若掷出的骰子大于或者等于3,则棋子向右移动一个单位(从0移动到1),若掷出的骰子小于或者等于2,则棋子向右移动两个单位(从0移动到2),若棋子移动到99处,则“闯关失败”,若棋子移动到100处,则“闯关成功”,无论“闯关失败”或者“闯关成功”都将停止游戏,记棋子在坐标处的概率为.
(1)求
(2)求证:为等比数列(其中),并求出
(3)若有5人同时参加此游戏,记随机变量为“闯关成功”的人数,求(结果保留两位有效数字).
2024-06-03更新 | 135次组卷 | 1卷引用:浙江省杭州市“桐·浦·富·兴”教研联盟高二5月考试2023-2024学年高二下学期5月调研测试数学试题
7 . 为贯彻落实《健康中国行动(2023-2030年)》《关于全面加强和改进新时代学校体育工作的意见》等文件精神,某高中学校学生发展中心随机抽查了100名学生,其中男生与女生人数之比为,并对他们进行了“是否喜欢体育运动”的问卷调查,得到如下统计结果:
性别体育运动合计
喜欢不喜欢
男生50
女生15
合计
(1)请根据要求完成列联表,并根据独立性检验,判断是否有的把握认为“是否喜欢体育运动”与性别有关;
(2)为了了解学生不喜欢体育运动的原因,从上述不喜欢体育运动的同学中随机选3位同学进行咨询,所选的3人中已知至少有两位是男生的条件下,求另外一位是女生的概率.
参考公式:.
0.100.050.010.001
2.7063.8416.63510.828
2024-06-03更新 | 148次组卷 | 1卷引用:浙江省杭州市“桐·浦·富·兴”教研联盟高二5月考试2023-2024学年高二下学期5月调研测试数学试题
8 . 某班上有5名同学相约周末去公园拍照,这5名同学站成一排,其中甲乙两名同学要求站在一起,丙同学不站在两端,不同的安排方法数有(       
A.24B.12C.48D.36
2024-06-03更新 | 159次组卷 | 1卷引用:浙江省杭州市“桐·浦·富·兴”教研联盟高二5月考试2023-2024学年高二下学期5月调研测试数学试题
9 . 对两个变量进行回归分析,则下列说法正确的是(       
A.在比较两个回归模型的拟合程度时,决定系数越大,拟合效果越好
B.若变量具有线性相关关系,则回归直线方程至少经过样本点的其中一个点
C.建立两个回归模型,模型1的线性相关系数,模型2的线性相关系数,则模型1的线性相关性更强
D.残差图中的点均匀地分布在一条水平的带状区域内,该带状区域宽度越窄,模型的拟合效果越好
2024-06-03更新 | 191次组卷 | 1卷引用:浙江省杭州市“桐·浦·富·兴”教研联盟高二5月考试2023-2024学年高二下学期5月调研测试数学试题
10 . 已知函数,其中,则下列选项正确的是(       
A.若,则
B.
C.,使有两解,则
D.有最大值
2024-06-03更新 | 89次组卷 | 1卷引用:浙江省杭州市“桐·浦·富·兴”教研联盟高二5月考试2023-2024学年高二下学期5月调研测试数学试题
共计 平均难度:一般