组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 37 道试题
1 . 我国元代数学家朱世杰在他的《四元玉鉴》一书中对高阶等差数列求和有精深的研究,即“垛积术”.对于数列,①,从第二项起,每一项与它前面相邻一项的差构成数列,②,称该数列②为数列①的一阶差分数列,其中;对于数列②,从第二项起,每一项与它前面相邻一项的差构成数列,③,称该数列③为数列①的二阶差分数列,其中按照上述办法,第次得到数列,④,则称数列④为数列①的阶差分数列,其中,若数列阶差分数列是非零常数列,则称数列阶等差数列(或高阶等差数列).
(1)若高阶等差数列,求数列的通项公式;
(2)若阶等差数列的通项公式

(ⅰ)求的值;

(ⅱ)求数列的前项和

附:
2024-06-01更新 | 214次组卷 | 1卷引用:江西省上进联考2023-2024学年高三下学期5月高考适应性大练兵数学试题
2 . 随着大数据时代来临,数据传输安全问题引起了人们的高度关注,国际上常用的数据加密算法通常有AESDESRSA等,不同算法密钥长度也不同,其中RSA的密钥长度较长,用于传输敏感数据.在密码学领域,欧拉函数是非常重要的,其中最著名的应用就是在RSA加密算法中的应用.设pq是两个正整数,若pq的最大公约数是1,则称pq互素.对于任意正整数n,欧拉函数是不超过n且与n互素的正整数的个数,记为.
(1)试求的值;
(2)设pq是两个不同的素数,试用pk表示),并探究的关系;
(3)设数列的通项公式为),求该数列的前m项的和.
2024-05-16更新 | 274次组卷 | 1卷引用:江西省重点中学盟校2024届高三第二次联考数学试题
3 . 在个数码构成的一个排列中,若一个较大的数码排在一个较小的数码的前面,则称它们构成逆序(例如,则构成逆序),这个排列的所有逆序的总个数称为这个排列的逆序数,记为,例如,.
(1)计算
(2)设数列满足,求的通项公式;
(3)设排列满足,证明:.
2024-04-22更新 | 374次组卷 | 2卷引用:江西省赣州市十八县(市)二十四校2023-2024学年高二下学期期中考试数学试题
4 . 马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是……,…,那么时刻的状态的条件概率仅依赖前一状态,即
现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.
假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:记赌徒的本金为一种是赌金达到预期的B元,赌徒停止赌博;另一种是赌徒输光本金后,赌徒可以向赌场借钱,最多借A元,再次输光后赌场不再借钱给赌徒.赌博过程如图的数轴所示.

当赌徒手中有n时,最终欠债A元(可以记为该赌徒手中有元)概率为,请回答下列问题:
(1)请直接写出的数值.
(2)证明是一个等差数列,并写出公差d
(3)当时,分别计算时,的数值,论述当B持续增大时,的统计含义.
2024-04-17更新 | 1243次组卷 | 3卷引用:江西省南昌市第十九中学2024届高三下学期第四次模拟考试数学试卷
5 . “费马点”是由十七世纪法国数学家费马提出并征解的一个问题.该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小.”意大利数学家托里拆利给出了解答,当的三个内角均小于时,使得的点即为费马点;当有一个内角大于或等于时,最大内角的顶点为费马点.试用以上知识解决下面问题:已知的内角所对的边分别为,且
(1)求
(2)若,设点的费马点,求
(3)设点的费马点,,求实数的最小值.
2024-03-03更新 | 4546次组卷 | 38卷引用:江西省南昌市第十中学2023-2024学年高一下学期第二次月考数学试题
6 . 固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程,其中为参数.当时,就是双曲余弦函数,类似地我们可以定义双曲正弦函数.它们与正、余弦函数有许多类似的性质.
(1)类比正弦函数的二倍角公式,请写出双曲正弦函数的一个正确的结论:_____________.(只写出即可,不要求证明);
(2),不等式恒成立,求实数的取值范围;
(3)若,试比较的大小关系,并证明你的结论.
2024-01-27更新 | 958次组卷 | 10卷引用:江西省上饶市横峰县横峰中学2023-2024学年高一下学期期中考试数学试卷
7 . 国家主席习近平在2024年新年贺词中指出,“2023年,我们接续奋斗砥砺前行,经历了风雨洗礼,看到了美丽风景,取得了沉甸甸的收获”“粮食生产“二十连丰,绿水青山成色更足,乡村振兴展现新气象”.某乡镇响应国家号召,计划修建如图所示的矩形花园,其占地面积为,花园四周修建通道,花园一边长为,且.

(1)设花园及周边通道的总占地面积为,试求的函数解析式;
(2)当时,试求的最小值.
解答题-应用题 | 适中(0.65) |
解题方法
8 . 某班级在迎新春活动中进行抽卡活动,不透明的卡箱中共有“福”“迎”“春”卡各两张,“龙”卡三张.每个学生从卡箱中随机抽取4张卡片,其中抽到“龙”卡获得2分,抽到其他卡均获得1分,若抽中“福”“龙”“迎”“春”张卡片,则额外获得2分.
(1)求学生甲抽到“福”“龙”“迎”“春”4张卡片的不同的抽法种数;
(2)求学生乙最终获得分的不同的抽法种数.
2024-01-17更新 | 547次组卷 | 7卷引用:江西省上饶艺术学校2023-2024学年高二上学期期末数学试题
9 . 2023年8月8日,为期12天的第31届世界大学生夏季运动会在成都圆满落幕.“天府之国”以一场青春盛宴,为来自世界113个国家和地区的6500名运动员留下了永恒的记忆.在这期间,成都大熊猫繁育研究基地成为各参赛代表团的热门参观地,大熊猫玩偶成为了颇受欢迎的纪念品.某大熊猫玩偶生产公司设计了某款新产品,为生产该产品需要引进新型设备.已知购买该新型设备需要5万元,之后每生产万件产品,还需另外投入原料费及其他费用万元,且,已知每件产品的售价为20元且生产的该产品可以全部卖出.
(1)写出利润(万元)关于产量(万件)的函数解析式.
(2)该产品产量为多少万件时,公司所获的利润最大?其最大利润为多少万元?
10 . 瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中,满足,顶点,且其“欧拉线”与圆相切.
(1)求的“欧拉线”方程;
(2)若圆M与圆有公共点,求a的范围;
(3)若点的“欧拉线”上,求的最小值.
共计 平均难度:一般