组卷网 > 知识点选题 > 探究性试题
解析
| 共计 766 道试题
1 . 已知椭圆,圆
(1)点是椭圆的下顶点,点在椭圆上,点在圆上(点异于点),连,直线与直线的斜率分别记作,若,试判断直线是否过定点?若过定点,请求出定点坐标;若不过定点,请说明理由.
(2)椭圆的左、右顶点分别为点,点(异于顶点)在椭圆上且位于轴上方,连分别交轴于点,点在圆上,求证:的充要条件为轴.
7日内更新 | 104次组卷 | 1卷引用:安安徽省安庆市示范高中2024届高三联考(三模)数学试题
2 . 已知圆,动圆P与圆M内切,且经过定点.设圆心P的轨迹为曲线
(1)求曲线的轨迹方程;
(2)若,过点的直线l与曲线Γ交于MN两点,连接分别交y轴于PQ.试探究是否为定值?若是,求出该定值;若不是,请说明理由.
7日内更新 | 141次组卷 | 1卷引用:四川省南充市2024届高三高考适应性考试(三诊)理科数学试题
解答题-证明题 | 较难(0.4) |
解题方法
3 . 已知点集满足.对于任意点集,若其非空子集AB满足,则称集合对的一个优划分.对任意点集及其优划分,记A中所有点的横坐标之和为B中所有点的纵坐标之和为.
(1)写出的一个优划分,使其满足
(2)对于任意点集,求证:存在的一个优划分,满足
(3)对于任意点集,求证:存在的一个优划分,满足.
7日内更新 | 491次组卷 | 2卷引用:北京市顺义区2024届高三第二次质量监测数学试卷
4 . 平面直角坐标系中,动点在圆上,动点(异于原点)在轴上,且,记的中点的轨迹为.
(1)求的方程;
(2)过点的动直线交于AB两点.问:是否存在定点,使得为定值,其中分别为直线NANB的斜率.若存在,求出的坐标,若不存在,说明理由.
7日内更新 | 267次组卷 | 1卷引用:福建省厦门市2024届高中毕业班第四次质量检测数学试题
5 . 法国数学家卢卡斯在研究一元二次方程的两个根不同幂的和时,发现了,…,由此推算______________.
7日内更新 | 84次组卷 | 1卷引用:江西省重点中学盟校2024届高三第二次联考数学试题
6 . 如图所示数阵,第行共有个数,第m行的第1个数为,第2个数为,第个数为.规定:.

(1)试判断每一行的最后两个数的大小关系,并证明你的结论;
(2)求证:每一行的所有数之和等于下一行的最后一个数;
(3)从第1行起,每一行最后一个数依次构成数列,设数列的前n项和为是否存在正整数k,使得对任意正整数n恒成立?如存在,请求出k的最大值,如不存在,请说明理由.
2024高一下·全国·专题练习
7 . 如图,已知四棱锥中,底面为平行四边形,点分别在上.

(1)若,求证:平面平面
(2)若点满足,则点满足什么条件时,平面?并证明你的结论.
2024-05-13更新 | 555次组卷 | 1卷引用:第八章 本章综合--归纳本章考点【第一课】“上好三节课,做好三套题“高中数学素养晋级之路
8 . 已知椭圆E的左、右焦点分别为,点M在椭圆E外,线段E相交于P,满足,点T在线段上,,且.
(1)若点P的坐标为,证明:
(2)求点T的轨迹C的方程;
(3)在曲线C上是否存在点N,使得的面积为,若存在,求的正切值,若不存在请说明理由.
2024-05-13更新 | 246次组卷 | 1卷引用:云南省昆明市第一中学2024届高中新课标高三第九次考前适应性训练数学试卷
9 . 在平面直角坐标系中,已知点为动点,以线段为直径的圆与轴相切.
(1)求动点的轨迹的方程.
(2)已知点问:在上是否存在点使得为等边三角形?若不存在,请说明理由;若存在,请说明这样的点有几组(不必说明点的坐标).
2024-05-11更新 | 184次组卷 | 1卷引用:山西省晋中市2024届高三下学期5月高考适应训练考试数学试卷
解答题-问答题 | 较难(0.4) |
解题方法
10 . 已知数列,从中选取第项、第项、…、第构成数列称为项子列.记数列的所有项的和为.当时,若满足:对任意,则称具有性质.规定:的任意一项都是项子列,且具有性质
(1)当时,比较的具有性质的子列个数与不具有性质的子列个数的大小,并说明理由;
(2)已知数列
(ⅰ)给定正整数,对项子列,求所有的算术平均值;
(ⅱ)若个不同的具有性质的子列,满足:都有公共项,且公共项构成的具有性质的子列,求的最大值.
2024-05-11更新 | 409次组卷 | 1卷引用:北京市西城区2024届高三下学期5月模拟测试数学试卷
共计 平均难度:一般