组卷网>知识点选题>利用二次求导法解决导数问题
显示答案
| 共计 57 道试题
1 . 已知函数eqIdca2506e21c2145909a9836cbf2bc3a62.
(1)当eqId316e2199840e418e87252dba1d7d7ffd时,求曲线eqId9b37d03e47a347fc8fab9f814ba5fac4eqIda9d8558290c64896b00f1c4577d0d92f处的切线方程;
(2)若对任意的eqId27b1abecc2474a8f94b2a3b83e27e283,都有eqId8fc29f78d9744140b2db99d941134919,求eqId70a27b6ddf6b478285353abb3b1f3741的取值范围.
2 . 已知函数eqIddf7b54af787c468081dd94f6c4121b14.
(1)若eqIdcd6910ab714441f4811883a849348a72,讨论函数eqId28c4c21271884dfeac29ce0222782376的单调性;
(2)已知eqIdd7aab1b71e7d43bd94542d0bd0a4a564,若eqId0e1827e2d0624729a476ec3dbee6c94beqIddaf40ea74fd844af8661cbf3127c3f53内有两个零点,求eqId70a27b6ddf6b478285353abb3b1f3741的取值范围.
3 . 已知函数eqId7febc8eabf3646a5a59d6c2a5ec7388a
(1)若eqId8fc29f78d9744140b2db99d941134919eqIdcb9cb8feb01f448397391534bb1367d5恒成立:求实数a的取值范围;
(2)当eqId2d569479cd1c43c1af15895792b64db6时,证明:eqId62581eef94f84cfaad1cdbe5e6d75cbe
4 . 已知函数eqIde0cc7a8531724992bfbbe57321e34169
(1)求函数eqId6f13759e937144069819aed2ae5a1057的极值;
(2)若eqIde8a3761981374dc9aaad7cdd5f52c1bd,且eqId5fcaffb8dc01431ebdbd8b1d5c32a322对任意eqIda75485e4fb5148ddab27294eeeb9fb8c恒成立,求eqIda4be99d332154d13a4a6ed1ff6444fe7的最大值.
5 . 已知eqId1114f3c6ed7a4511b95076c936a011b6,若eqId60d0c4d3c33643a197b52645355cfb28eqId335be522792443369538e70fa36cce50eqId37102b5cede64d119f423d7b4cab46b5 ,则eqId70a27b6ddf6b478285353abb3b1f3741eqIdaea992e70d4943e49e893817eb885ed7eqId44925af6fb19413689ba5616e3647cba的大小关系为(   )
A.eqId18513915a070416db1e6b2d279419695B.eqId21670918e051478bbbcf459616d534f8
C.eqIdd267db4f512541f8825f9d0ff4192c96D.eqId96f25c3294b2457ca92c563e42cd8713
填空题 | 一般(0.65) | 2021·浙江高三其他模拟
6 . 已知函数f(x)=eqId0edcbf39c06944a3bd0e17ce11af81fbg(x)=eqId78067602ec63421c85c98eb60fce32cd,且eqIda9cd3f94eb8045438f75e9daccfa7200满足eqId2f6480921ec147ab9cf4ee82c7a4636e,则g(x)-f(x)的最大值为__________
7 . 已知函数eqId86c68ce79c364cb5b66ae624316b9738.
(1)证明:曲线eqId9b37d03e47a347fc8fab9f814ba5fac4在点eqId2cb0b5c25a7e411abb9bf0c694c7c4ac处的切线eqId417e80f1349244878d01fe90e0891f5f恒过定点;
(2)若eqId4837c94ef0ff4dcf9b1dda4df363275a有两个零点eqId735b8047beee4dee870fc72ae837a245eqIdecaaaffea9af458c8e6dff16f15c1a73,且eqId0ff917cdcda644cb9f544267b114b465,证明:eqId94ef570c09b04e3ca95d61d2be837910.
8 . 拉格朗日中值定理:若函数eqId4837c94ef0ff4dcf9b1dda4df363275aeqIda69c830a9f82463db4b9655aa5b0e4f8上连续,且在eqId58fada709cd845aba2d819e971b46b4b上可导,则必存在eqIdeed29c7b2e1e4b9c99ea01531bd410b4,满足等式eqIdf19bd1469faa4ffd9747e5f990d1ddb5,若eqId2777cdc207f94071bc9ec28a6c3bf580,对eqId7ccf0ed94af24935ad2105efd13e040eeqId082437ac9ea94f9a98589d0c9b8276a2eqId20a226a45deb40d0a41a90b9e80ea49c,那么实数eqId69f56ef2c88b4b73a560da59f5247a82的最大值为(   )
A.eqId5c1c12d4b3ba4aaab6267324ae66c81eB.1C.eqIdf035b8f27d4645bb9f6a66f4a3f51918D.eqIda6b19fa9a22040fbb2cb05b8a778b847
9 . 已知函数eqId4028eb080025421ca408705d2a6a933a.
(1)求曲线eqId9b37d03e47a347fc8fab9f814ba5fac4在点eqIdb58abca134e44fae8038715b1e714449处的切线方程;
(2)当eqId21b197e7b0f348f9973f9bff0961bf89时,求证:eqId4159e39c9a7a42dca383e1ac270e2056
(3)求证:当eqIdcd417b810d7840698ef8d00a3f9ef251时,方程eqId09be6ed4df39409694383d569d263f80有且仅有2个实数根.
10 . 已知函数eqIdacbb26a6ab2a4650aa38927bfd9c38c4
(1)当eqIdd78df7c3aa4747a4b868757aa0e4e3f5时,求eqId4837c94ef0ff4dcf9b1dda4df363275a图象在点eqIdbeed51f79f62495299262b641c125b67处的切线方程;
(2)当eqId982da3835b7946d999cc8604a2ece266eqIdadcf7b90342440a0a207c6072f17d6a8时,证明eqId4c57aa32001640c083bfd7db1ba3ab8f有且仅有两个零点.
3道题,平均难度一般 清空试题 进入组卷中心
收起