组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 12 道试题
1 . 已知O为坐标原点,PQ分别是线段上的动点,则下列说法正确的是(       
A.点M到直线的距离为B.若,则点Q的坐标为
C.点M关于直线对称的点的坐标为D.周长的最小值为
2023-09-30更新 | 496次组卷 | 5卷引用:广东省阳江市2023-2024学年高二上学期期中数学试题
2 . 已知,下列说法正确的是(       
A.时,
B.若方程有两个根,则
C.若直线有两个交点,则
D.函数有3个零点
2023-09-23更新 | 1045次组卷 | 5卷引用:广东省阳江市2023-2024学年高二上学期期中数学试题
3 . 为了学习、宣传和践行党的二十大精神,某班组织全班学生开展了以“学党史、知国情、圆梦想”为主题的党史暨时政知识竞赛活动.已知该班男生人,女生人,根据统计分析,男生组成绩和女生组成绩的方差分别为.记该班成绩的方差为,则下列判断正确的是(       
A.B.C.D.
2023-09-05更新 | 875次组卷 | 10卷引用:广东省阳江市2023-2024学年高二上学期期中数学试题
4 . 新高考数学试卷中的多项选择题,给出的4个选项中有2个以上选项是正确的,每一道题考生全部选对得5分. 对而不全得2分,选项中有错误得0分. 设一套数学试卷的多选题中有2个选项正确的概率为,有3个选项正确的概率为,没有4个选项都正确的(在本问题中认为其概率为0). 在一次模拟考试中:
(1)小明可以确认一道多选题的选项A是错误的,从其余的三个选项中随机选择2个作为答案,若小明该题得5分的概率为,求
(2)小明可以确认另一道多选题的选项A是正确的,其余的选项只能随机选择. 小明有三种方案:①只选A不再选择其他答案;②从另外三个选项中再随机选择1个,共选2个;③从另外三个选项中再随机选择2个,共选3个. 若,以最后得分的数学期望为决策依据,小明应该选择哪个方案?
2023-07-04更新 | 1143次组卷 | 9卷引用:广东省阳江市2022-2023学年高二下学期期末数学试题
5 . 抛物线CABC的焦点弦(       
A.点PC的准线上,则的最小值为0
B.以AB为直径的所有圆中,圆面积的最小值为9π
C.若AB的斜率,则△ABO的面积
D.存在一个半径为的定圆与以AB为直径的圆都内切
2023-06-25更新 | 808次组卷 | 4卷引用:广东省阳江市2024届高三上学期第一次阶段调研数学试题
6 . 一个不透明的袋子中装有大小形状完全相同的红、黄、蓝三种颜色的小球各一个,每次从袋子中随机摸出一个小球,记录颜色后放回,当三种颜色的小球均被摸出过时就停止摸球.设“第i次摸到红球”,“第i次摸到黄球”,“第i次摸到蓝球”,“摸完第i次球后就停止摸球”,则(       
A.B.
C.D.
2023-06-23更新 | 1452次组卷 | 5卷引用:广东省阳江市2022-2023学年高二下学期期末数学试题
7 . 某科研单位研制出某型号科考飞艇,一艘该型号飞艇最多只能执行科考任务,一艘该型号飞艇第1次执行科考任务,能成功返航的概率为,若第执行科考任务能成功返航,则执行第次科考任务且能成功返航的概率也为,否则此飞艇结束科考任务.一艘该型号飞艇每次执行科考任务,若能成功返航,则可获得价值为万元的科考数据,且“”的概率为0.8,“”的概率为0.2;若不能成功返航,则此次科考任务不能获得任何科考数据.记一艘该型号飞艇共可获得的科考数据的总价值为万元.
(1)若,求的分布列;
(2)求(用表示).
8 . 已知椭圆,其右焦点为,以为端点作条射线交椭圆于,且每两条相邻射线的夹角相等,则(       
A.当时,
B.当时,的面积的最小值为
C.当时,
D.当时,过作椭圆的切线,且交于点交于点,则的斜率乘积为定值
2023-05-18更新 | 2234次组卷 | 6卷引用:广东省阳江市2024届高三上学期开学适应性考试数学试题
9 . 已知正方体的棱长为为空间中任一点,则下列结论中正确的是(       
A.若为线段上任一点,则所成角的范围为
B.若为正方形的中心,则三棱锥外接球的体积为
C.若在正方形内部,且,则点轨迹的长度为
D.若三棱锥的体积为恒成立,点轨迹的为椭圆的一部分
2023-04-28更新 | 2645次组卷 | 6卷引用:广东省阳江市2024届高三上学期开学适应性考试数学试题
10 . 2021年7月中共中央办公厅、国务院办公厅印发了《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,随后各学校积极响应,认真落实.“双减”不仅仅是减轻了学生家庭的经济负担、学生的课业负担,同时也增加了学生每天的体育锻炼时间.经过对某市义务教育阶段各学校学生平均每天体育锻炼时间的抽样调查,得出“双减”政策出台前(图1)与“双减”政策出台后(图2)的两个频率分布直方图.同一组中的数据用该组区间的中点值作代表,请解答下列问题:

(1)根据上面两个频率分布直方图,估计“双减”政策出台后,学生平均每天的体育锻炼时间增加多少分钟;
(2)如果把每天平均体育锻炼时间在69分钟以上(含69分钟)的情况定义为“良”,把上述两个样本数据的频率视为概率,试估算出该市在“双减”政策出台后,学生平均每天的体育锻炼时间为“良”的概率.
共计 平均难度:一般