组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 678 道试题
1 . 已知函数.
(1)当时,证明:
(2)已知,求证:函数存在极小值.
2024-03-11更新 | 130次组卷 | 1卷引用:江西省新八校2023-2024学年高三上学期第一次联考(期末)数学试题
2 . 固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程,其中为参数.当时,就是双曲余弦函数,类似地我们可以定义双曲正弦函数.它们与正、余弦函数有许多类似的性质.
(1)类比正弦函数的二倍角公式,请写出双曲正弦函数的一个正确的结论:_____________.(只写出即可,不要求证明);
(2),不等式恒成立,求实数的取值范围;
(3)若,试比较的大小关系,并证明你的结论.
2024-01-27更新 | 959次组卷 | 11卷引用:江西省上饶市横峰县横峰中学2023-2024学年高一下学期期中考试数学试卷
3 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.
阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入;(4)整体求和等.
例如,,求证:.
证明:原式.
波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.
阅读材料二:基本不等式,当且仅当时等号成立,它是解决最值问题的有力工具.
例如:在的条件下,当x为何值时,有最小值,最小值是多少?
解:∵,∴,即,∴
当且仅当,即时,有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)已知如,求下列各式的值:
___________.
___________.
(2)若,解方程.
(3)若正数ab满足,求的最小值.
2021-10-29更新 | 532次组卷 | 3卷引用:江西省南昌市第二中学2023-2024学年高一上学期月考数学试题(一)
4 . 如图1,在等腰梯形中,EF分别为腰的中点.将四边形沿折起,使平面平面,如图2,HM别线段的中点.

(1)求证:平面
(2)请在图2所给的点中找出两个点,使得这两点所在直线与平面垂直,并给出证明:
(3)若N为线段中点,在直线上是否存在点Q,使得?如果存在,求出线段的长度,如果不存在,请说明理由.
5 . 如图,在四棱锥中,,平面平面ABCD.

(1)求证:
(2)已知二面角的余弦值为.线段PC上是否存在点M,使得BM与平面PAC所成的角为30°?证明你的结论.
6 . 已知,其中为常数.
(1)当时,求证:不等式恒成立;
(2)当时,记方程的两根为,试判断的大小,并证明.
2020-10-10更新 | 293次组卷 | 2卷引用:江西省南昌市第二中学2021届高三上学期第三次考试数学(理)试题
7 . 完成下列证明:
(Ⅰ)求证:
(Ⅱ)若,求证:.
8 . 已知定义在上的函数满足以下三个条件:
①对任意实数,都有

在区间上为增函数.
(1)判断函数的奇偶性,并加以证明;
(2)求证:
(3)解不等式
9 . 已知定义在上的函数满足:对任意都有.
(1)求证:函数是奇函数;
(2)如果当时,有,试判断上的单调性,并用定义证明你的判断;
(3)在(2)的条件下,若对满足不等式的任意恒成立,求的取值范围.
10 . 已知函数,其中
(Ⅰ)讨论的单调性;
(Ⅱ)当时,证明:
(Ⅲ)求证:对任意正整数n,都有(其中e≈2.7183为自然对数的底数)
共计 平均难度:一般