组卷网 > 章节选题 > 必修1
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 1265 道试题
1 . 若是定义在上的增函数,其中,存在函数,且函数图像上存在两点图像上存在两点,其中两点横坐标相等,两点横坐标相等,且,则称上可以对进行“型平行追逐”,即上的“型平行追逐函数”. 已知是定义在上的奇函数,是定义在上的偶函数.
(1)求满足的值;
(2)设函数,若不等式对任意的恒成立,求实数的取值范围;
(3)若函数上的“型平行追逐函数”,求正数的取值范围.
7日内更新 | 159次组卷 | 1卷引用:广东实验中学2023-2024学年高一下学期第二次段考数学试题
2 . 已知函数为奇函数.
(1)求实数a的值;
(2)判断函数的单调性(不用证明);
(3)设函数,若对任意的,总存在,使得成立,求实数m的取值范围.
3 . 已知函数).
(1)若上的最小值为,求a的值;
(2)证明:存在唯一零点且满足.
2024-05-13更新 | 261次组卷 | 1卷引用:广东省广州市华南师范大学附属中学2023-2024学年高一下学期期中考试数学试题
4 . 已知函数的定义域分别为,若对任意,恰好存在个不同的实数,使得 (其中),则称的“重覆盖函数”.
(1)试判断是否为的“2重覆盖函数”?请说明理由;
(2)若,为,的“2重覆盖函数”,求实数的取值范围;
(3)函数表示不超过的最大整数,如.若的“2024重覆盖函数”请直接写出正实数的取值范围.
6 . 已知二次函数满足,且为偶函数,且当时,

   

(1)求的解析式;
(2)在给定的坐标系内画出的图象;
(3)讨论函数)的零点个数.
7 . 某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值与这种新材料的含量(单位:克)的关系:当时,的二次函数;当时,测得数据如下表所示(部分):
(单位:克)0129
03
(1)求关于的函数关系式
(2)求函数的最大值.
8 . 已知函数为偶函数.
(1)求实数的值;
(2)求函数的值域;
(3)若函数,那么是否存在实数,使得的最小值为1?若存在,求出的值,若不存在,说明理由.
2024-06-10更新 | 540次组卷 | 1卷引用:广东省韶关市仁化县仁化中学2023-2024学年高一上学期期中考试数学试题
9 . 已知函数是定义域上的奇函数,且
(1)判断并证明函数上的单调性;
(2)令函数,若对,都有,求实数的取值范围.
2024-04-30更新 | 367次组卷 | 1卷引用:广东省广州市第六中学2023-2024学年高一上学期期中考试数学试题
10 . 已知是定义在上的奇函数.
(1)求的解析式;
(2)若对于恒成立,求实数的取值范围.
2024-03-15更新 | 159次组卷 | 1卷引用:广东省高州市第一中学2023-2024学年高一上学期期中考试数学试题
共计 平均难度:一般