组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 1219 道试题
1 . 在中,设ABC所对的边分别为abc,已知.
(1)求的大小;
(2)若,求边长的取值范围;
(3)若,求面积的最大值.
2024-05-08更新 | 593次组卷 | 1卷引用:浙江省台州市十校联盟2023-2024学年高一下学期4月期中联考数学试题
2 . 已知椭圆,直线交椭圆于MN两点,T为椭圆的右顶点,的内切圆为圆Q.
(1)求椭圆的焦点坐标;
(2)求圆Q的方程;
(3)设点,过P作圆Q的两条切线分别交椭圆C于点AB,求的周长.
2024-04-18更新 | 877次组卷 | 2卷引用:浙江省台州市2024届高三下学期第二次教学质量评估数学试题
3 . 已知数列满足.
(1)求(只需写出数值,不需要证明);
(2)若数列的通项可以表示成的形式,求.
2024-04-18更新 | 637次组卷 | 2卷引用:浙江省台州市2024届高三下学期第二次教学质量评估数学试题
4 . 如图,已知四棱台中,,且为线段中点,

(1)求证:平面
(2)若四棱锥的体积为,求平面与平面夹角的余弦值.
2024-04-18更新 | 819次组卷 | 3卷引用:浙江省台州市2024届高三下学期第二次教学质量评估数学试题
解答题-证明题 | 困难(0.15) |
5 . 设AB是两个非空集合,如果对于集合A中的任意一个元素x,按照某种确定的对应关系,在集合B中都有唯一确定的元素y和它对应,并且不同的x对应不同的y;同时B中的每一个元素y,都有一个A中的元素x与它对应,则称为从集合A到集合B的一一对应,并称集合AB等势,记作.若集合AB之间不存在一一对应关系,则称AB不等势,记作.
例如:对于集合,存在一一对应关系,因此.
(1)已知集合,试判断是否成立?请说明理由;
(2)证明:①
.
2024-04-18更新 | 963次组卷 | 4卷引用:浙江省台州市2024届高三下学期第二次教学质量评估数学试题
6 . 台州是全国三大电动车生产基地之一,拥有完整的产业链和突出的设计优势.某电动车公司为了抢占更多的市场份额,计划加大广告投入、该公司近5年的年广告费(单位:百万元)和年销售量(单位:百万辆)关系如图所示:令,数据经过初步处理得:
   
444.81040.31.61219.58.06
现有①和②两种方案作为年销售量y关于年广告费x的回归分析模型,其中abmn均为常数.
(1)请从相关系数的角度,分析哪一个模型拟合程度更好?
(2)根据(1)的分析选取拟合程度更好的回归分析模型及表中数据,求出y关于x的回归方程,并预测年广告费为6(百万元)时,产品的年销售量是多少?
(3)该公司生产的电动车毛利润为每辆200元(不含广告费、研发经费).该公司在加大广告投入的同时也加大研发经费的投入,年研发经费为年广告费的199倍.电动车的年净利润受年广告费和年研发经费影响外还受随机变量影响,设随机变量服从正态分布,且满足.在(2)的条件下,求该公司年净利润的最大值大于1000(百万元)的概率.(年净利润=毛利润×年销售量-年广告费-年研发经费-随机变量).
附:①相关系数
回归直线中公式分别为
②参考数据:.
2024-04-18更新 | 3019次组卷 | 7卷引用:浙江省台州市2024届高三下学期第二次教学质量评估数学试题
7 . 如图,点PQ分别是矩形ABCD的边DCBC上的两点,

   

(1)若,求的范围;
(2)若,求的最小值;
(3)若,连接APBC的延长线于点TQBC的中点,试探究线段AB上是否存在一点H,使得最大.若存在,求BH的长;若不存在,说明理由.
2024-03-31更新 | 665次组卷 | 5卷引用:浙江省台州市十校联盟2023-2024学年高一下学期4月期中联考数学试题
8 . 某游乐园中有一座摩天轮.如图所示,摩天轮所在的平面与地面垂直,摩天轮为东西走向.地面上有一条北偏东为的笔直公路,其中.摩天轮近似为一个圆,其半径为,圆心到地面的距离为,其最高点为点正下方的地面点与公路的距离为.甲在摩天轮上,乙在公路上.(为了计算方便,甲乙两人的身高、摩天轮的座舱高度和公路宽度忽略不计)

(1)如图所示,甲位于摩天轮的点处时,从甲看乙的最大俯角的正切值等于多少?
(2)当甲随着摩天轮转动时,从乙看甲的最大仰角的正切值等于多少?
9 . 在长方体中,.从①②这两个条件中任选一个解答该题.
①直线与平面所成角的正弦值为
②平面与平面的夹角的余弦值为.

(1)求的长度;
(2)是线段(不含端点)上的一点,若平面平面,求的值.
2024-02-18更新 | 66次组卷 | 1卷引用:浙江省台州市2023-2024学年高二上学期1月期末质量评估数学试题
10 . 已知函数   .
(1)用单调性定义证明:上单调递增;
(2)若函数有3个零点,满足,且 .
①求证:
②求的值(表示不超过的最大整数).
2024-02-18更新 | 133次组卷 | 1卷引用:浙江省台州市2023-2024学年高一上学期1月期末数学试题
共计 平均难度:一般