组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 103 道试题
1 . 已知动点到点的距离比到直线的距离小1,设动点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)已知点,过点作直线与曲线交于两点,连接分别交两点.
①当直线的斜率存在时,设直线的斜率为,直线的斜率为,试判断是否为定值?若是,求出该定值;若不是,请说明理由;
②求面积的最小值.
7日内更新 | 29次组卷 | 1卷引用:湖北省宜荆荆随恩2023-2024学年高二下学期5月联考数学试题
2 . 某高中学校有室内、室外两个运动场.假设同学们可以任意选择其中一个运动场锻炼,也可选择不锻炼,一天最多锻炼一次,一次只能选择一个运动场.若同学们每次锻炼选择去室内、室外运动场的概率均为0.5,每次选择相互独立.设同学三天内去运动场锻炼的次数为,已知的分布列如下:(其中
0123
(1)记事件表示同学三天内去运动场锻炼;事件表示同学在这三天内去室内运动场锻炼的次数大于去室外运动场锻炼的次数.当时,试根据全概率公式求的值;
(2)是否存在实数,使得?若存在,求的值;若不存在,请说明理由;
(3)记表示事件“室外运动场举办集体锻炼活动”,表示事件“王同学去室外运动场锻炼”,.已知同学在室外运动场举办集体锻炼活动的情况下去室外运动场锻炼的概率,比不举办集体锻炼活动的情况下去室外运动场锻炼的概率大,试比较的大小,并证明之.
7日内更新 | 51次组卷 | 1卷引用:湖北省宜荆荆随恩2023-2024学年高二下学期5月联考数学试题
3 . 如图,对于曲线,若存在圆满足如下条件:
①圆与曲线有公共点,且圆心在曲线凹的一侧;
②圆与曲线在点处有相同的切线;
③曲线的导函数在处的导数(即曲线在点的二阶导数)等于圆在点处的二阶导数(已知圆在点处的二阶导数等于);则称圆为曲线点处的曲率圆,其半径称为曲率半径.

   

(1)求抛物线在原点的曲率圆的方程;
(2)(i)求证:平面曲线在点的曲率半径为(其中表示的导函数);
(ii)若圆为函数的一个曲率圆,求圆半径的最小值;
(3)若曲线处有相同的曲率半径,求证:.
2024-06-06更新 | 91次组卷 | 1卷引用:湖北省宜昌市夷陵中学等校2023-2024学年高二下学期5月联合测评数学试题
4 . 18世纪早期英国牛顿学派最优秀代表人物之一的数学家泰勒(Brook Taylor)发现的泰勒公式(又称夌克劳林公式)有如下特殊形式:当处的阶导数都存在时,.其中,表示的二阶导数,即为的导数,表示阶导数.
(1)根据公式估计的值;(结果保留两位有效数字)
(2)由公式可得:,当时,请比较的大小,并给出证明;
(3)已知,证明:
2024-05-31更新 | 307次组卷 | 2卷引用:湖北省云学名校联盟2023-2024学年高二下学期期中联考数学试卷
5 . 对于函数的导函数,若在其定义域内存在实数,使得成立,则称是“跃然”函数,并称是函数的“跃然值”.
(1)证明:当时,函数是“跃然”函数;
(2)证明:为“跃然”函数,并求出该函数“跃然值”的取值范围.
2024-05-15更新 | 435次组卷 | 2卷引用:湖北省“荆、荆、襄、宜四地七校”考试联盟2023-2024学年高二下学期期中联考数学试卷变式题16-19
6 . 已知函数
(1)求函数的最小值;
(2)求函数上的最小值;
(3)若不等式恒成立,求实数的取值范围.
7 . 已知动点M到点的距离与到直线的距离之比为.
(1)求动点M的轨迹C的方程;
(2)过点的直线与轨迹C交于PQ两点,点P关于x轴对称的点为R,求面积的取值范围.
2024-04-30更新 | 231次组卷 | 1卷引用:湖北省鄂北六校2023-2024学年高二下学期期中考试数学试卷
8 . 帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法.给定两个正整数,函数处的阶帕德近似定义为:,且满足:.(注:的导数)已知处的阶帕德近似为.
(1)求实数的值;
(2)证明:当时,
(3)设为实数,讨论方程的解的个数.
2024-04-26更新 | 411次组卷 | 3卷引用:湖北省“荆、荆、襄、宜四地七校”考试联盟2023-2024学年高二下学期期中联考数学试卷
9 . 已知函数的定义域分别为,若对任意,恰好存在个不同的实数,使得 (其中),则称的“重覆盖函数”.
(1)试判断是否为的“2重覆盖函数”?请说明理由;
(2)若,为,的“2重覆盖函数”,求实数的取值范围;
(3)函数表示不超过的最大整数,如.若的“2024重覆盖函数”请直接写出正实数的取值范围.
10 . 相传古希腊毕达哥拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究数,并根据小石子所排列的形状把数分成许多类.现有三角形数表按如图的方式构成,其中项数:第一行是以1为首项,2为公差的等差数列.从第二行起,每一个数是其肩上两个数的和,例如:为数表中第行的第个数.

(1)求第3行和第4行的通项公式
(2)一般地,证明一个与正整数有关的命题,可按下列步骤进行:①证明当时命题成立;②以“当时命题成立”为条件,推出“当时命题也成立.”完成这两个步骤就可以断定命题对开始的所有正整数都成立,这种方法即数学归纳法.请证明:数表中除最后2行外每一行的数都依次成等差数列,并求关于的表达式;
(3)若,试求一个等比数列,使得,且对于任意的,均存在实数,当时,都有
共计 平均难度:一般