组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 10 道试题
1 . 根据多元微分求条件极值理论,要求二元函数在约束条件的可能极值点,首先构造出一个拉格朗日辅助函数,其中为拉格朗日系数.分别对中的部分求导,并使之为0,得到三个方程组,如下:
,解此方程组,得出解,就是二元函数在约束条件的可能极值点.的值代入到中即为极值.
补充说明:【例】求函数关于变量的导数.即:将变量当做常数,即:,下标加上,代表对自变量x进行求导.即拉格朗日乘数法方程组之中的表示分别对进行求导.
(1)求函数关于变量的导数并求当处的导数值.
(2)利用拉格朗日乘数法求:设实数满足,求的最大值.
(3)①若为实数,且,证明:
②设,求的最小值.
2024-03-27更新 | 875次组卷 | 2卷引用:压轴题03不等式压轴题13题型汇总-2
2 . ,且.
(1)方程有且仅有一个解,求的取值范围.
(2)设,对,总,使成立,求的范围.
(3)若的图象关于对称,求不等式的解集.
2023-05-21更新 | 1189次组卷 | 6卷引用:专题5.9 三角函数全章八类必考压轴题-举一反三系列
3 . 已知函数,甲变化:;乙变化:.
(1)若经甲变化得到,求方程的解;
(2)若经乙变化得到,求不等式的解集;
(3)若上单调递增,将先进行甲变化得到,再将进行乙变化得到;将先进行乙变化得到,再将进行甲变化得到,若对任意,总存在成立,求证:在R上单调递增.
2022-01-14更新 | 608次组卷 | 2卷引用:第03讲 函数及其性质-2
2023·全国·模拟预测
4 . 九连环是中国一种古老的智力游戏,其结构如图,玩九连环就是要把这九个环全部从框架上解下或套上.研究发现,要解下第个环,则必须先解下前面第个环.用表示解下个环所需最少移动次数,用表示前个环都已经解下后,再解下第个环所需次数,显然,,且.若要将第个环解下,则必须先将第个环套回框架,这个过程需要移动次,这时再移动1次,就可以解下第个环;然后再将第个环解下,又需要移动次.由此可得,.据此计算______.

2023-12-08更新 | 376次组卷 | 3卷引用:【讲】专题9 与图表有关的数列问题
2022·上海浦东新·模拟预测
5 . 已知定义域为的函数.当时,若)是增函数,则称是一个“函数”.
(1)判断函数)是否为函数,并说明理由;
(2)若定义域为函数满足,解关于的不等式
(3)设是满足下列条件的定义域为的函数组成的集合:①对任意都是函数;②. 若对一切和所有成立,求实数的最大值.
2022-07-05更新 | 1738次组卷 | 8卷引用:考向10函数与导数(重点)-2
6 . 同余定理是数论中的重要内容.同余的定义为:设a.若则称ab关于模m同余,记作(modm)(“|”为整除符号).
(1)解同余方程(mod3);
(2)设(1)中方程的所有正根构成数列,其中
①若),数列的前n项和为,求
②若),求数列的前n项和
2024-02-03更新 | 2803次组卷 | 9卷引用:压轴题函数与导数新定义题(九省联考第19题模式)练
7 . 已知函数的图象在处的切线与轴平行.
(1)求的关系式并求的单调减区间;
(2)证明:对任意实数,关于的方程:,恒有实数解;
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数是在闭区间,上连续不断的函数,且在区间内导数都存在,则在内至少存在一点,使得.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
时,(可不用证明函数的连续性和可导性).
2024-01-14更新 | 373次组卷 | 2卷引用:模块三 大招1 拉格朗日中值定理
8 . 设常数.在棱长为1的正方体中,点满足,点分别为棱上的动点(均不与顶点重合),且满足,记.以为原点,分别以的方向为轴的正方向,建立如图空间直角坐标系

(1)用表示点的坐标;
(2)设,若,求常数的值;
(3)记到平面的距离为.求证:若关于的方程上恰有两个不同的解,则这两个解中至少有一个大于.
2023-05-11更新 | 494次组卷 | 2卷引用:第五篇 向量与几何 专题18 空间点线面问题 微点2 空间点线面问题综合训练
9 . 在面积为中,内角所对的边分别为,且
(1)若为锐角三角形,是关于的方程的解,求的取值范围;
(2)若的外接圆的直径为8,分别在线段上运动(包括端点),为边的中点,且的面积为.令,求的最小值.
2023-06-11更新 | 457次组卷 | 3卷引用:第6章 平面向量及其应用 单元综合检测(难点)-《重难点题型·高分突破》(人教A版2019必修第二册)
10 . 在概率较难计算但数据量相当大、误差允许的情况下,可以使用UnionBound(布尔不等式)进行估计概率.已知UnionBound不等式为:记随机事件,则.其误差允许下可将左右两边视为近似相等.据此解决以下问题:
(1)有个不同的球,其中个有数字标号.每次等概率随机抽取个球中的一个球.抽完后放回.记抽取次球后个有数字标号的球每个都至少抽了一次的概率为,现在给定常数,则满足的最小值为多少?请用UnionBound估计其近似的最小值,结果不用取整.这里相当大且远大于
(2)然而实际情况中,UnionBound精度往往不够,因此需要用容斥原理求出精确值.已知概率容斥原理:记随机事件,则.试问在(1)的情况下,用容斥原理求出的精确的的最小值是多少(结果不用取整)?相当大且远大于.
(1)(2)问参考数据:当相当大时,取.
2024-05-16更新 | 1285次组卷 | 3卷引用:压轴题08计数原理、二项式定理、概率统计压轴题6题型汇总
共计 平均难度:一般