1 . 设抛物线的焦点为,过且斜率为1的直线与交于两点,且.
(1)求抛物线的方程;
(2)已知过点的直线与交于不重合的两点,且,直线和的斜率分别为和.求证:为定值.
(1)求抛物线的方程;
(2)已知过点的直线与交于不重合的两点,且,直线和的斜率分别为和.求证:为定值.
您最近一年使用:0次
2024-01-03更新
|
736次组卷
|
4卷引用:广西壮族自治区玉林市博白县五校2023-2024学年高二上学期12月联考数学试卷
名校
解题方法
2 . 已知椭圆,焦距为2,离心率.
(1)求椭圆的方程;
(2)若椭圆的左焦点为,椭圆上A点横坐标为,求椭圆的长轴长、短轴长及的面积.
(1)求椭圆的方程;
(2)若椭圆的左焦点为,椭圆上A点横坐标为,求椭圆的长轴长、短轴长及的面积.
您最近一年使用:0次
2024-01-03更新
|
3374次组卷
|
5卷引用:广西壮族自治区玉林市博白县五校2023-2024学年高二上学期12月联考数学试卷
广西壮族自治区玉林市博白县五校2023-2024学年高二上学期12月联考数学试卷宁夏回族自治区银川市贺兰县第一中学2023-2024学年高二上学期期末复习数学试题(三)(已下线)专题27 直线与椭圆的位置关系及椭圆的弦长问题、面积问题(期末大题1)2023-2024学年高二数学上学期期末题型秒杀技巧及专项练习(人教A版2019)(已下线)3.1.2 椭圆的简单几何性质【第一练】“上好三节课,做好三套题“高中数学素养晋级之路(已下线)2.5.2 椭圆的几何性质——随堂检测
解题方法
3 . 已知数列的前项和为.
(1)求的通项公式;
(2)若,求数列的前项和.
(1)求的通项公式;
(2)若,求数列的前项和.
您最近一年使用:0次
解题方法
4 . 已知过点的直线l与抛物线相交于两点.
(1)求证:;
(2)当的面积等于时,求直线l的方程.
(1)求证:;
(2)当的面积等于时,求直线l的方程.
您最近一年使用:0次
名校
解题方法
5 . 已知直线.
(1)求证:直线与圆恒有公共点;
(2)若直线与圆心为的圆相交于两点,且为直角三角形,求的值.
(1)求证:直线与圆恒有公共点;
(2)若直线与圆心为的圆相交于两点,且为直角三角形,求的值.
您最近一年使用:0次
名校
6 . 如图,在四面体中,,分别是线段,上的点且,,,,,,.
(1)证明:平面;
(2)在线段上是否存在点,使得与平面所成角的正弦值为?若存在,求的值;若不存在,请说明理由.
(1)证明:平面;
(2)在线段上是否存在点,使得与平面所成角的正弦值为?若存在,求的值;若不存在,请说明理由.
您最近一年使用:0次
解题方法
7 . 设分别是椭圆的左、右焦点,当时,点P在椭圆上,且.
(1)求椭圆C的方程;
(2)直线与椭圆C交于A,B两点,若,求实数m的值.
(1)求椭圆C的方程;
(2)直线与椭圆C交于A,B两点,若,求实数m的值.
您最近一年使用:0次
解题方法
8 . 已知点,直线.
(1)求经过点且与直线平行的直线方程;
(2)求经过点且与直线垂直的直线方程.
(1)求经过点且与直线平行的直线方程;
(2)求经过点且与直线垂直的直线方程.
您最近一年使用:0次
2023-12-26更新
|
364次组卷
|
4卷引用:广西壮族自治区崇左市大新县民族高级中学2023-2024学年高二上学期期中考试数学试题
9 . 安徽新高考改革方案正式公布,根据改革方案,计入高考总分的考试科目共有6门,即“3+1+2”,“3”为语文、数学、外语3门全国统一考试科目,不分文理科,使用全国卷,选择性考试科目为思想政治、历史、地理、物理、化学、生物学6门.由考生根据报考高校要求,结合自身特长兴趣,首先在物理和历史中选择1门,再从思想政治、地理、化学、生物学中选择2门.
附表:
,.
(1)若某学生根据方案从选择性考试科目中随机选择三科,求该生恰好选到政史地的概率;
(2)由于物理和历史两科必须选择1科,某校想了解学生选科的需求,随机选取100名学生进行调查,得到如下统计数据,判断是否有99%的把握认为“选科与性别有关”?
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(1)若某学生根据方案从选择性考试科目中随机选择三科,求该生恰好选到政史地的概率;
(2)由于物理和历史两科必须选择1科,某校想了解学生选科的需求,随机选取100名学生进行调查,得到如下统计数据,判断是否有99%的把握认为“选科与性别有关”?
选择物理 | 选择历史 | 合计 | |
男 | 40 | 10 | 50 |
女 | 30 | 20 | 50 |
合计 | 70 | 30 | 100 |
您最近一年使用:0次
名校
解题方法
10 . 记的内角,,所对的边分别为,,,已知,,,
(1)求;
(2)求的面积.
(1)求;
(2)求的面积.
您最近一年使用:0次