组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 20 道试题
1 . 在中,对应的边分别为.
(1)求
(2)奥古斯丁•路易斯柯西,法国著名数学家.柯西在数学领域有非常高的造诣.很多数学的定理和公式都以他的名字来命名,如柯西不等式柯西积分公式.其中柯西不等式在解决不等式证明的有关问题中有着广泛的应用.
①用向量证明二维柯西不等式:
②已知三维分式型柯西不等式:,当且仅当时等号成立.若内一点,过的垂线,垂足分别为,求的最小值.
2024-05-12更新 | 467次组卷 | 5卷引用:【江苏专用】高一下学期期末模拟测试A卷
2 . 拉格朗日中值定理是微分学的基本定理之一,其内容为:如果函数在闭区间上的图象连续不断,在开区间内的导数为,那么在区间内存在点,使得成立.设,其中为自然对数的底数,.易知,在实数集上有唯一零点,且

(1)证明:当时,
(2)从图形上看,函数的零点就是函数的图象与轴交点的横坐标.直接求解的零点是困难的,运用牛顿法,我们可以得到零点的近似解:先用二分法,可在中选定一个作为的初始近似值,使得,然后在点处作曲线的切线,切线与轴的交点的横坐标为,称的一次近似值;在点处作曲线的切线,切线与轴的交点的横坐标为,称的二次近似值;重复以上过程,得的近似值序列
①当时,证明:
②根据①的结论,运用数学归纳法可以证得:为递减数列,且.请以此为前提条件,证明:
2024-05-31更新 | 661次组卷 | 4卷引用:【江苏专用】高二下学期期末模拟测试B卷
3 . 我国古代数学名著《九章算术》中,称四面都为直角三角形的三棱锥为“鳖臑”.如图,在三棱锥中,平面

(1)证明:三棱锥为鳖臑;
(2)若上一点,点分别为的中点.平面与平面的交线为
①证明:直线平面
②判断的位置关系,并证明你的结论.
4 . “弦图”是我国古代三国时期的数学家赵爽为《周髀算经》作注时为证明勾股定理所绘制,此图曾作为2002年在北京召开的第24届国际数学家大会的会标如图,在正方形中,有4个全等的直角三角形,若图中的两锐角分别为,且小正方形与大正方形的面积之比为,则的值为________

   

2024-04-10更新 | 283次组卷 | 3卷引用:江苏省苏州市昆山中学2023-2024学年高一下学期3月月考数学试题
单选题 | 较易(0.85) |
名校
5 . 数学里有一种证明方法叫做Proofwithoutwords,也被称为无字证明,是指仅用图象而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证明被认为比严格的数学证明更为优雅与有条理.如下图,点为半圆上一点,,垂足为,记,则由可以直接证明的三角函数公式是(       

A.B.C.D.
2024-04-11更新 | 227次组卷 | 3卷引用:专题02 三角恒等变换(2)-期末考点大串讲(苏教版(2019))
6 . 固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程为,其中为参数.当时,就是双曲余弦函数,类似地我们可以定义双曲正弦函数.它们与正、余弦函数有许多类似的性质.
(1)类比正、余弦函数导数之间的关系,,请写出具有的类似的性质(不需要证明);
(2)当时,恒成立,求实数的取值范围;
(3)求的最小值.
2024-03-10更新 | 1098次组卷 | 16卷引用:模块一 专题3 《导数在研究函数极值和最值中的应用》B提升卷(苏教版)
7 . 希腊数学家帕普斯在他的著作《数学汇篇》中,完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证明,他指出,到定点的距离与到定直线的距离的比是常数的点的轨迹叫做圆锥曲线:当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线,则方程表示的圆锥曲线为(       
A.椭圆B.双曲线C.抛物线D.以上都不对
8 . 若内一点满足,则称点的布洛卡点,的布洛卡角.如图,已知中,,点为的布洛卡点,的布洛卡角.

(1)若,且满足,求的大小.
(2)若为锐角三角形.
(ⅰ)证明:
(ⅱ)若平分,证明:
2024-04-30更新 | 1949次组卷 | 6卷引用:专题06 解三角形综合大题归类(2) -期末考点大串讲(苏教版(2019))
9 . 三等分角是古希腊几何尺规作图的三大问题之一,如今数学上已经证明三等分任意角是尺规作图不可能问题,如果不局限于尺规,三等分任意角是可能的.下面是数学家帕普斯给出的一种三等分角的方法:已知角的顶点为,在的两边上截取,连接,在线段上取一点,使得,记的中点为,以为中心,为顶点作离心率为2的双曲线,以为圆心,为半径作圆,与双曲线左支交于点(射线内部),则.在上述作法中,以为原点,直线轴建立如图所示的平面直角坐标系,若,点轴的上方.

(1)求双曲线的方程;
(2)若过点且与轴垂直的直线交轴于点,点到直线的距离为.
证明:①为定值;
.
2024-05-15更新 | 614次组卷 | 3卷引用:江苏省苏锡常镇四市2024届高三下学期教学情况调研考试数学试题
10 . 勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”. 中国是发现和研究勾股定理最古老的国家之一. 据记载,在公元前1120年,商高答周公曰“故折矩,以为勾广三,股修四,径隅五,既方之,外半其一矩,环而共盘,得成三四五,两矩共长二十有五,是谓积矩. ”因此,勾股定理在中国又称“商高定理”. 数百年后,希腊数学家毕达哥拉斯发现并证明了这个定理,因此“勾股定理”在西方被称为“毕达哥拉斯定理”. 三国时期,吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明. 如图所示的勾股圆方图中,四个全等的直角三角形与中间的小正方形拼成一个大正方形. 若中间小正方形面积(阴影部分)是大正方形面积一半,则直角三角形中较小的锐角的大小为_________.

2024-01-29更新 | 129次组卷 | 3卷引用:高一 模块3 专题1 第1套 小题进阶提升练
共计 平均难度:一般