组卷网 > 知识点选题 > 三角函数与解三角形
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 366 道试题
1 . 青岛胶东国际机场的显著特点之一是弯曲曲线的运用,衡量曲线弯曲程度的重要指标是曲率.考察图所示的光滑曲线上的曲线段,其弧长为,当动点从A沿曲线段运动到B点时,A点的切线也随着转动到B点的切线,记这两条切线之间的夹角为(它等于的倾斜角与的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义为曲线段的平均曲率;显然当B越接近A,即越小,K就越能精确刻画曲线C在点A处的弯曲程度,因此定义曲线在点处的曲率计算公式为,其中

(1)求单位圆上圆心角为的圆弧的平均曲率;
(2)已知函数,求曲线的曲率的最大值;
(3)已知函数,若曲率为0时x的最小值分别为,求证:
2 . 在平面直角坐标系中,利用公式①(其中为常数),将点变换为点的坐标,我们称该变换为线性变换,也称①为坐标变换公式,该变换公式①可由组成的正方形数表唯一确定,我们将称为二阶矩阵,矩阵通常用大写英文字母,…表示.

(1)在平面直角坐标系中,将点绕原点按逆时针旋转得到点(到原点距离不变),求点的坐标;
(2)如图,在平面直角坐标系中,将点绕原点按逆时针旋转角得到点(到原点距离不变),求坐标变换公式及对应的二阶矩阵;
(3)向量(称为行向量形式),也可以写成,这种形式的向量称为列向量,线性变换坐标公式①可以表示为:,则称是二阶矩阵与向量的乘积,设是一个二阶矩阵,是平面上的任意两个向量,求证:
2024-04-12更新 | 1972次组卷 | 7卷引用:湖南省湘楚名校2023-2024学年高二下学期5月月考数学试题
3 . 已知函数,将函数向右平移个单位得到的图像关于轴对称且当时,取得最大值.
(1)求函数的解析式:
(2)将函数图象上所有的点向右平移个单位长度,得到函数的图象,若,且,求的值.
(3)方程上有4个不相等的实数根,求实数的取值范围.
4 . 在中,对应的边分别为
(1)求
(2)奥古斯丁.路易斯.柯西(Augustin Louis Cauchy,1789年-1857年),法国著名数学家.柯西在数学领域有非常高的造诣.很多数学的定理和公式都以他的名字来命名,如柯西不等式、柯西积分公式.其中柯西不等式在解决不等式证明的有关问题中有着广泛的应用.
①用向量证明二维柯西不等式:
②已知三维分式型柯西不等式:,当且仅当时等号成立.若内一点,过垂线,垂足分别为,求的最小值.
2024-04-11更新 | 427次组卷 | 5卷引用:福建省厦门双十中学2023-2024学年高一下学期4月月考数学试题
2024高一下·上海·专题练习
5 . 用分别表示的三个内角所对边的边长,表示的外接圆半径.
(1),求的长;
(2)在中,若是钝角,求证:
(3)给定三个正实数,其中,问满足怎样的关系时,以为边长,为外接圆半径的不存在,存在一个或存在两个(全等的三角形算作同一个)?在存在的情况下,用表示.
2024-04-10更新 | 288次组卷 | 2卷引用:广东省东莞市嘉荣外国语学校2023-2024学年高一下学期3月月考数学试卷
6 . 已知均为锐角,,且.
(1)若,求
(2)若,求
(3)求的最大值.
2024-04-10更新 | 158次组卷 | 1卷引用:江苏省海门中学2023-2024学年高一下学期三月学情调研数学试卷
7 . 定义非零向量的(相伴函数)为,向量称为函数的“相伴向量”( 其中为坐标原点)
(1)求的相伴向量;
(2)求(1)中函数的“相伴向量”模的取值范围;
(3)已知点,其中为锐角中角的对边.若角,且向量的“相伴函数”处取得最大值.求的取值范围.
2024-04-08更新 | 278次组卷 | 1卷引用:福建省三明市四校2023-2024学年高一下学期联考数学试题
8 . 如图,现有一食品厂的占地区域为半圆形,直径AB的中点,OB的中点,点BA的延长线上,且,市政规划要求,在半圆弧上选取一点,各修建一条地下管道ECED通往CD两点.
   
(1)设,试将管道总长(即EC+ED)表示为的函数;
(2)若修建管道EC的费用为10万元,修建管道ED的费用为20万元,求修建管道的总费用的最大值.
2024-04-07更新 | 169次组卷 | 1卷引用:安徽省定远县第三中学2023-2024学年高一下学期3月月考数学试卷
9 . 定义:为实数的“正弦方差”.
(1)若,则实数的“正弦方差”的值是否是与无关的定值,并证明你的结论
(2)若,若实数的“正弦方差”的值是与无关的定值,求值.
2024-04-07更新 | 170次组卷 | 3卷引用:江苏省扬州市邗江区第一中学2023-2024学年高一下学期3月阶段性考试数学试题
10 . 定义函数的“源向量”为,非零向量的“伴随函数”为,其中为坐标原点.

(1)若向量的“伴随函数”为,求的值域;
(2)若函数的“源向量”为,且以为圆心,为半径的圆内切于正(顶点恰好在轴的正半轴上),求证:为定值;
(3)在中,角的对边分别为,若函数的“源向量”为,且已知,求的取值范围.
首页3 4 5 6 7 8 9 10 末页
跳转: 确定
共计 平均难度:一般