组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 164 道试题
2 . 已知双曲线的左、右顶点分别为,渐近线方程为,过左焦点的直线交于两点.
(1)设直线的斜率分别为,求的值;
(2)若直线与直线的交点为,试问双曲线上是否存在定点,使得的面积为定值?若存在,求出定点的坐标;若不存在,请说明理由.
2024-06-14更新 | 381次组卷 | 3卷引用:吉林省长春市实验中学2023-2024学年高三下学期对位演练考试数学试卷(七)
3 . 在信息理论中,是两个取值相同的离散型随机变量,分布列分别为:.定义随机变量的信息量的“距离”
(1)若,求
(2)已知发报台发出信号为0和1,接收台收到信号只有0和1.现发报台发出信号为0的概率为,由于通信信号受到干扰,发出信号0接收台收到信号为0的概率为,发出信号1接收台收到信号为1的概率为
(ⅰ)若接收台收到信号为0,求发报台发出信号为0的概率;(用表示结果)
(ⅱ)记随机变量分别为发出信号和收到信号,证明:
4 . 已知函数.
(1)若的极小值为-4,求的值;
(2)若有两个不同的极值点,证明:.
2024-06-10更新 | 70次组卷 | 1卷引用:吉林省长春市第二实验中学2023-2024学年高二下学期期中考试数学试题
5 . 函数之间的关系非常密切,号称函数中的双子座,以下说法正确的是(       
A.若,使得成立,则
B.
C.直线与两个函数图象交点的横坐标之积的范围是
D.若直线过两个函数图象的公共点,则直线与两个函数图象的所有交点横坐标从小到大排列依次构成等比数列
2024-05-16更新 | 288次组卷 | 1卷引用:吉林省长春市2024届向三第四次质量监测数学试卷
6 . 对于数列,称为数列的一阶差分数列,其中.对正整数,称为数列阶差分数列,其中已知数列的首项,且的二阶差分数列.
(1)求数列的通项公式;
(2)设为数列的一阶差分数列,对,是否都有成立?并说明理由;(其中为组合数)
(3)对于(2)中的数列,令,其中.证明:.
7 . 已知函数
(1)讨论的单调性;
(2)设分别是的极小值点和极大值点,记
(i)证明:直线与曲线交于除外另一点
(ii)在(i)结论下,判断是否存在定值,使,若存在,请求出的值;若不存在,请说明理由.
8 . 如图,已知双曲线的离心率为2,点上,为双曲线的左、右顶点,右支上的动点,直线和直线交于点,直线的右支于点

(1)求的方程;
(2)探究直线是否过定点,若过定点,求出该定点坐标;否则,请说明理由;
(3)设分别为的外接圆面积,求的取值范围.

9 . 与大家熟悉的黄金分割相类似的还有一个白银分割,比如A4纸中就包含着白银分割率.若一个数列从0和1开始,以后每一个数都是前面的数的两倍加上再前面的数:0,1,2,5,12,29,70,169,408,985,2378,…,则随着n趋于无穷大,其前一项与后一项的比值越来越接近白银分割率.记该数列为,其前n项和为,则下列结论正确的是(       

A.B.
C.D.
2024-03-30更新 | 413次组卷 | 1卷引用:吉林省延边部分学校2024年普通高校招生考试模拟卷(一)数学试题

10 . 已知有两个极值点


(1)求实数a的取值范围;
(2)证明:
2024-03-30更新 | 422次组卷 | 1卷引用:吉林省延边部分学校2024年普通高校招生考试模拟卷(一)数学试题
共计 平均难度:一般