1 . 下列结论中是正确的有( )
A.函数的零点是 |
B.已知幂函数的图象不过原点,则实数的取值为1 |
C.函数(其中且)的图象过定点 |
D.若的值域为,则实数的取值范围是 |
您最近一年使用:0次
2 . 如图,已知两质点A,B同时从点P出发,绕单位圆逆时针做匀速圆周运动,质点A,B运动的角速度分别为3rad/s和5rad/s,设两质点运动时这两质点间的距离为.
(1)求的解析式;
(2)求这两质点从点P出发后第n次相遇的时间(单位:s).
(1)求的解析式;
(2)求这两质点从点P出发后第n次相遇的时间(单位:s).
您最近一年使用:0次
2023-09-30更新
|
241次组卷
|
3卷引用:河南省2023-2024学年高三上学期一轮复习阶段性检测(三)数学试题
河南省2023-2024学年高三上学期一轮复习阶段性检测(三)数学试题江西省部分高中学校2024届高三上学期9月大联考数学试题(已下线)专题05 三角函数(5大易错点分析+解题模板+举一反三+易错题通关)
3 . 已知定义域为的函数满足,且曲线与曲线有且只有两个交点,则函数的零点之和是( )
A.2 | B.-2 | C.4 | D.-4 |
您最近一年使用:0次
2023-09-28更新
|
620次组卷
|
5卷引用:河南省2023-2024学年高三上学期一轮复习阶段性检测(三)数学试题
河南省2023-2024学年高三上学期一轮复习阶段性检测(三)数学试题河北省邢台市五岳联盟2024届高三上学期9月月考数学试题江西省部分高中学校2024届高三上学期9月大联考数学试题(已下线)第四章:指数函数与对数函数章末重点题型复习(2)-【题型分类归纳】(人教A版2019必修第一册)【课后练】 第4.4节综合训练 课后作业-湘教版(2019)必修(第一册)第4章 幂函数、指数函数和对数函数
名校
解题方法
4 . 设,函数,.
(1)若函数的值域是,求的取值范围;
(2)当时,记函数,讨论在区间内零点的个数.
(1)若函数的值域是,求的取值范围;
(2)当时,记函数,讨论在区间内零点的个数.
您最近一年使用:0次
2023-09-25更新
|
489次组卷
|
2卷引用:河南省周口市河南省基础教育教学研究院(普通合伙)等2校2022-2023学年高一上学期期末数学试题
名校
解题方法
5 . 设函数的定义域为,若存在,使得,则称是函数的二阶不动点.下列各函数中,有且仅有一个二阶不动点的函数是( )
A. | B. |
C. | D. |
您最近一年使用:0次
2023-09-25更新
|
1474次组卷
|
6卷引用:河南省周口市河南省基础教育教学研究院(普通合伙)等2校2022-2023学年高一上学期期末数学试题
河南省周口市河南省基础教育教学研究院(普通合伙)等2校2022-2023学年高一上学期期末数学试题(已下线)模块六 专题5 全真拔高模拟1 期末研习室高一人教A浙江省温州市鹿城区温州人文高级中学2023-2024学年高一上学期12月月考数学试题广东省2024届高三数学新改革适应性训练二(九省联考题型)(已下线)专题6 函数的零点问题(过关集训)(压轴题大全)(已下线)专题7 嵌套函数与函数迭代问题(过关集训)(压轴题大全)
6 . 已知函数相邻两条对称轴距离为3,且,函数,则方程的所有实根之和为___________ .
您最近一年使用:0次
2023-09-14更新
|
389次组卷
|
2卷引用:河南省郑州外国语学校2023-2024学年高三上学期第三次调研考试数学试题
名校
解题方法
7 . 已知函数,则( )
A.在定义域上单调递增 |
B.没有零点 |
C.不存在平行于x轴且与曲线相切的直线 |
D.的图象是中心对称图形 |
您最近一年使用:0次
2023-09-10更新
|
370次组卷
|
2卷引用:河南省天一联考2023-2024学年高三上学期调研考试数学试题
名校
8 . 已知函数在区间上有且仅有4条对称轴,给出下列四个结论:①在区间上有且仅有3个不同的零点;②的最小正周期可能是;③的取值范围是;④在区间上单调递增.其中所有正确结论的序号是( )
A.①④ | B.②③ | C.② | D.②③④ |
您最近一年使用:0次
2023-09-07更新
|
295次组卷
|
3卷引用:河南省三门峡市五县市2023-2024学年高一上学期1期末调研考试数学试题
解题方法
9 . 下列命题正确的是( )
A.若集合有个元素,则的真子集的个数为 |
B.“,使”的否定是“,恒有” |
C.函数的最小值为 |
D.函数的零点为 |
您最近一年使用:0次
名校
解题方法
10 . 已知函数(为自然对数的底数),则函数的零点个数为( )
A.1 | B.3 | C.5 | D.7 |
您最近一年使用:0次
2023-08-31更新
|
2053次组卷
|
7卷引用:河南省2024届高三上学期起点考试数学试题
河南省2024届高三上学期起点考试数学试题河南省洛阳市洛宁县第一高级中学2023-2024学年高三上学期第二次月考数学试题(已下线)第四章 导数与函数的零点 专题三 复合函数零点问题 微点1 复合函数零点问题(一)(已下线)模块二 大招18 复合方程的实数根问题(已下线)2.10 函数与方程(高三一轮)【同步课时】提升卷(已下线)专题03 函数零点的综合应用六大类型-【常考压轴题】(苏教版2019必修第一册)(已下线)【必夺分】突破点13 函数的零点与方程的解