组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 103 道试题
1 . 已知分别为双曲线的左、右支上的点,的右焦点为为坐标原点.
(1)若三点共线,且的面积为,求直线的方程.
(2)若直线与圆相切,试判断是否为定值.若是,求出该定值;若不是,请说明理由.
2 . 已知动点与定点的距离和到定直线的距离的比为常数.其中,且,记点的轨迹为曲线
(1)求的方程,并说明轨迹的形状;
(2)设点,若曲线上两动点均在轴上方,,且相交于点
①当时,求证:的值及的周长均为定值;
②当时,记的面积为,其内切圆半径为,试探究是否存在常数,使得恒成立?若存在,求(用表示);若不存在,请说明理由.
3 . 抛物线与椭圆有相同的焦点,分别是椭圆的上、下焦点,P是椭圆上的任一点,I的内心,y轴于M,且,点是抛物线上在第一象限的点,且在该点处的切线与x轴的交点为,若,则____________
4 . 多元导数在微积分学中有重要的应用.设是由…等多个自变量唯一确定的因变量,则当变化为时,变化为,记的导数,其符号为.和一般导数一样,若在上,已知,则随着的增大而增大;反之,已知,则随着的增大而减小.多元导数除满足一般分式的运算性质外,还具有下列性质:①可加性:;②乘法法则:;③除法法则:;④复合法则:.记.(为自然对数的底数),
(1)写出的表达式;
(2)已知方程有两实根.
①求出的取值范围;
②证明,并写出的变化趋势.
2024-02-21更新 | 1075次组卷 | 3卷引用:广东省广州市华南师范大学附属中学2024届高三上学期数学周测试题(12)
5 . 已知函数
(1)讨论的单调性;
(2)设分别为的极大值点和极小值点,记
(ⅰ)证明:直线AB与曲线交于另一点C
(ⅱ)在(i)的条件下,判断是否存在常数,使得.若存在,求n;若不存在,说明理由.
附:
6 . 在平面直角坐标系中,点,点A为动点,以线段为直径的圆与轴相切,记A的轨迹为,直线于另一点B
(1)求的方程;
(2)的外接圆交于点(不与OAB重合),依次连接OACB构成凸四边形,记其面积为
(i)证明:的重心在定直线上;
(ii)求的取值范围.
22-23高三下·北京海淀·开学考试
名校
解题方法
7 . 若无穷数列的各项均为整数.且对于,都存在,使得,则称数列满足性质P
(1)判断下列数列是否满足性质P,并说明理由.
,2,3,…;
,2,3,….
(2)若数列满足性质P,且,求证:集合为无限集;
(3)若周期数列满足性质P,求数列的通项公式.
8 . 已知动点到直线的距离与它到定点的距离之比为,记点的轨迹为曲线.
(1)求的方程;
(2)记轴的上下半轴的交点依次为,若上异于的一点,且直线分别交直线两点,直线于点(异于).
(i)求直线的斜率之积;
(ii)证明:直线恒过定点.
2024-02-03更新 | 442次组卷 | 1卷引用:广东省深圳市南山区2024届高三上学期期末质量监测数学试题
9 . 如图,为圆锥底面的直径,,点是圆上异于的动点,球内切于圆锥(与圆锥底面和侧面相切),点是球与圆锥侧面的交线上的动点,则下列结论正确的是(       
A.若,三棱锥体积的最大值为8
B.若,平面与底面所成角的取值范围为
C.若,内切球的表面积为
D.若的最大值为4
2024-01-25更新 | 746次组卷 | 3卷引用:广东省2024届高三上学期元月期末统一调研测试数学试卷
10 . 已知数列为有穷正整数数列.若数列A满足如下两个性质,则称数列Amk减数列:

②对于,使得的正整数对k个.
(1)写出所有4的1减数列;
(2)若存在m的6减数列,证明:
(3)若存在2024的k减数列,求k的最大值.
共计 平均难度:一般