解题方法
1 . 已知分别为双曲线的左、右顶点,,动直线与双曲线交于两点.当轴,且时,四边形的面积为.
(1)求双曲线的标准方程.
(2)设均在双曲线的右支上,直线与分别交轴于两点,若,判断直线是否过定点.若过,求出该定点的坐标;若不过,请说明理由.
您最近一年使用:0次
2 . 已知是椭圆C:上的动点,过原点O向圆M:引两条切线,分别与椭圆C交于P,Q两点(如图所示),记直线OP,OQ的斜率依次为,,且.
(1)求圆M的半径r;
(2)求证:为定值;
(3)求四边形OPMQ的面积的最大值.
您最近一年使用:0次
2024-03-20更新
|
638次组卷
|
2卷引用:河南省济洛平许2024届高三第三次质量检测数学试题
名校
解题方法
3 . 已知双曲线,过点的直线与双曲线相交于两点.
(1)点能否是线段的中点?请说明理由;
(2)若点都在双曲线的右支上,直线与轴交于点,设,求的取值范围.
(1)点能否是线段的中点?请说明理由;
(2)若点都在双曲线的右支上,直线与轴交于点,设,求的取值范围.
您最近一年使用:0次
名校
解题方法
4 . 在平面直角坐标系xOy中,椭圆W:的离心率为,已知椭圆长轴长是短轴长的2倍,且椭圆W过点.
(1)求椭圆W的方程;
(2)已知平行四边形ABCD的四个顶点均在W上,求平行四边形ABCD的面积S的最大值.
(1)求椭圆W的方程;
(2)已知平行四边形ABCD的四个顶点均在W上,求平行四边形ABCD的面积S的最大值.
您最近一年使用:0次
2024-03-20更新
|
1598次组卷
|
4卷引用:安徽省芜湖市安徽师范大学附属中学2024届高三第二次模拟考试数学试题
安徽省芜湖市安徽师范大学附属中学2024届高三第二次模拟考试数学试题安徽省天域全国名校协作体2024届高三下学期联考(二模)数学试题重庆市开州中学2024届高三下学期全国卷模拟考试(一)数学试题(已下线)安徽省天域全国名校协作体2024届高三下学期联考(二模)数学试题变式题16-19
5 . 已知双曲线的渐近线方程为的焦距为,且.
(1)求的标准方程;
(2)若为上的一点,且为圆外一点,过作圆的两条切线,(斜率都存在),与交于另一点与交于另一点,证明:
(i)的斜率之积为定值;
(ii)存在定点,使得关于点对称.
(1)求的标准方程;
(2)若为上的一点,且为圆外一点,过作圆的两条切线,(斜率都存在),与交于另一点与交于另一点,证明:
(i)的斜率之积为定值;
(ii)存在定点,使得关于点对称.
您最近一年使用:0次
名校
解题方法
6 . 已知双曲线:,F为双曲线的右焦点,过F作直线交双曲线于A,B两点,过F点且与直线垂直的直线交直线于P点,直线OP交双曲线于M,N两点.
(1)求双曲线的离心率;
(2)若直线OP的斜率为,求的值;
(3)设直线AB,AP,AM,AN的斜率分别为,,,,且,,记,,,试探究v与u,w满足的方程关系,并将v用w,u表示出来.
(1)求双曲线的离心率;
(2)若直线OP的斜率为,求的值;
(3)设直线AB,AP,AM,AN的斜率分别为,,,,且,,记,,,试探究v与u,w满足的方程关系,并将v用w,u表示出来.
您最近一年使用:0次
名校
解题方法
7 . 在中,已知,,设分别是的重心、垂心、外心,且存在使.
(1)求点的轨迹的方程;
(2)求的外心的纵坐标的取值范围;
(3)设直线与的另一个交点为,记与的面积分别为,是否存在实数使?若存在,求出的值;若不存在,请说明理由.
(1)求点的轨迹的方程;
(2)求的外心的纵坐标的取值范围;
(3)设直线与的另一个交点为,记与的面积分别为,是否存在实数使?若存在,求出的值;若不存在,请说明理由.
您最近一年使用:0次
2024-03-19更新
|
1296次组卷
|
5卷引用:上海市四校(复兴高级中学、松江二中、奉贤中学、金山中学)2024届高三下学期3月联考数学试卷
上海市四校(复兴高级中学、松江二中、奉贤中学、金山中学)2024届高三下学期3月联考数学试卷山西省晋城市第一中学校2023-2024学年高二下学期第二次调研考试数学试题(已下线)上海市四校(复兴高级中学、松江二中、奉贤中学、金山中学)2024届高三下学期3月联考数学试题变式题17-21河南省信阳高级中学2024届高三5月测试(一)二模数学试题(已下线)专题13 学科素养与综合问题(解答题18)
名校
解题方法
8 . 已知结论:椭圆上一点处切线方程为.试用此结论解答下列问题.如图,已知椭圆:的右焦点为,原点为,椭圆的动弦AB过焦点且不垂直于坐标轴,弦的中点为,椭圆在点A,B处的两切线的交点为.
(1)试判断:O,M,N三点是否共线若三点共线,请给出证明;若三点不共线,请说明理由;
(2)求的最小值.
(1)试判断:O,M,N三点是否共线若三点共线,请给出证明;若三点不共线,请说明理由;
(2)求的最小值.
您最近一年使用:0次
9 . 在平面直角坐标系中,动点M到点的距离比到点的距离大2,记点M的轨迹为曲线H.
(1)若过点B的直线交曲线H于不同的两点,求该直线斜率的取值范围;
(2)若点D为曲线H上的一个动点,过点D与曲线H相切的直线与曲线交于P,Q两点,求面积的最小值.
您最近一年使用:0次
10 . 已知分别是椭圆的左、右焦点,是上位于轴上方的两点,∥,且与的交点为.
(1)求四边形的面积S的最大值;
(2)证明:为定值.
您最近一年使用:0次